{"title":"GABA, epigallocatechin gallate, tea, and the gut-brain axis","authors":"Tina Hinton, Graham A.R. Johnston","doi":"10.1016/j.neuint.2024.105860","DOIUrl":null,"url":null,"abstract":"<div><div>Our investigations on GABA-enriched tea and the reduction of stress in a student cohort have shown that more than just GABA may be involved. The effects of other constituents that are changed in the enrichment process are likely to be important. We have concentrated on GABA as well as the major tea flavonoid, epigallocatechin gallate. While this flavonoid is known to get to the brain on oral administration, it is far from clear that GABA does the same. GABA may act primarily on the gut and influence brain function via the gut-brain axis and the gut microbiome. In addition, there may be a microbiome in the brain that has a role. The situation is complex and not clearly understood. Mixtures of bioactive compounds are always difficult to investigate, but even the precise mechanisms of how pure oral GABA acts as a neuro-nutraceutical is unclear.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105860"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018624001876","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Our investigations on GABA-enriched tea and the reduction of stress in a student cohort have shown that more than just GABA may be involved. The effects of other constituents that are changed in the enrichment process are likely to be important. We have concentrated on GABA as well as the major tea flavonoid, epigallocatechin gallate. While this flavonoid is known to get to the brain on oral administration, it is far from clear that GABA does the same. GABA may act primarily on the gut and influence brain function via the gut-brain axis and the gut microbiome. In addition, there may be a microbiome in the brain that has a role. The situation is complex and not clearly understood. Mixtures of bioactive compounds are always difficult to investigate, but even the precise mechanisms of how pure oral GABA acts as a neuro-nutraceutical is unclear.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.