Highly Mesoporous Zr-Based MOF-Fabric Composites: A Benign Approach for Expeditious Degradation of Chemical Warfare Agents and Simulants.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-09-23 DOI:10.1002/smll.202405831
Mai O Abdelmigeed, John J Mahle, Gregory W Peterson, Gregory N Parsons
{"title":"Highly Mesoporous Zr-Based MOF-Fabric Composites: A Benign Approach for Expeditious Degradation of Chemical Warfare Agents and Simulants.","authors":"Mai O Abdelmigeed, John J Mahle, Gregory W Peterson, Gregory N Parsons","doi":"10.1002/smll.202405831","DOIUrl":null,"url":null,"abstract":"<p><p>Recent research has demonstrated the degradation of organophosphonates through hydrolysis using microporous UiO-66-NH<sub>2</sub>-fabric composites. Yet, challenges remain due to the limitations of organophosphonates accessing active sites in large, engineered granules. To address this, an innovative approach to integrate mesoporous UiO-66-NH<sub>2</sub> onto various fabrics is provided, thereby overcoming previous mass transfer limitations. Mesoporosity in the UiO-66-NH<sub>2</sub>-fabric is attributed to the amphoteric cocamidopropylbetaine (CAPB) surfactant which templates the mesochannel construction. Unexpectedly, because the synthesis is aqueous, benign, low temperature (60°C), and avoids strong acids and toxic solvents, it is compatible with fragile supports such as untreated cotton. The UiO-66-NH<sub>2</sub>-fabric composite formed using treated polypropylene (PP) attains a BET specific surface area of 360 m<sup>2</sup> g<sup>-1</sup> <sub>comp</sub>. Remarkably, the mesoporous UiO-66-NH<sub>2</sub>-composites exhibit a pore volume as large as 0.2 cm<sup>3</sup> g<sup>-1</sup> <sub>comp</sub>, 33% in the mesoporous range, which is higher than other previous reports. Practically, the mesoporous UiO-66-NH<sub>2</sub>-treated PP composite enhances the rate of methyl paraoxon (DMNP) degradation, showing a t<sub>1/2</sub> value that is 15 times faster than microporous UiO-66-NH<sub>2</sub> composites measured under the same conditions. Similar trends are observed in the degradation of actual nerve agents. These composites hold significant potential across diverse applications, including filtration, protection, and catalysis.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202405831","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent research has demonstrated the degradation of organophosphonates through hydrolysis using microporous UiO-66-NH2-fabric composites. Yet, challenges remain due to the limitations of organophosphonates accessing active sites in large, engineered granules. To address this, an innovative approach to integrate mesoporous UiO-66-NH2 onto various fabrics is provided, thereby overcoming previous mass transfer limitations. Mesoporosity in the UiO-66-NH2-fabric is attributed to the amphoteric cocamidopropylbetaine (CAPB) surfactant which templates the mesochannel construction. Unexpectedly, because the synthesis is aqueous, benign, low temperature (60°C), and avoids strong acids and toxic solvents, it is compatible with fragile supports such as untreated cotton. The UiO-66-NH2-fabric composite formed using treated polypropylene (PP) attains a BET specific surface area of 360 m2 g-1 comp. Remarkably, the mesoporous UiO-66-NH2-composites exhibit a pore volume as large as 0.2 cm3 g-1 comp, 33% in the mesoporous range, which is higher than other previous reports. Practically, the mesoporous UiO-66-NH2-treated PP composite enhances the rate of methyl paraoxon (DMNP) degradation, showing a t1/2 value that is 15 times faster than microporous UiO-66-NH2 composites measured under the same conditions. Similar trends are observed in the degradation of actual nerve agents. These composites hold significant potential across diverse applications, including filtration, protection, and catalysis.

Abstract Image

高介孔 Zr 基 MOF-Fabric 复合材料:快速降解化学战剂和模拟物的良性方法。
最近的研究表明,使用微孔 UiO-66-NH2 纤维复合材料可通过水解作用降解有机膦酸盐。然而,由于有机膦酸盐进入大型工程颗粒活性位点的限制,挑战依然存在。为了解决这个问题,我们提供了一种创新方法,将介孔 UiO-66-NH2 集成到各种织物上,从而克服了以前的传质限制。UiO-66-NH2 织物的介孔性归功于为介孔通道结构提供模板的两性椰油酰胺丙基甜菜碱(CAPB)表面活性剂。出乎意料的是,由于合成过程是水性的、良性的、低温(60°C)的,并且避免使用强酸和有毒溶剂,因此与未经处理的棉花等易碎支撑物兼容。使用经处理的聚丙烯(PP)形成的 UiO-66-NH2 织物复合材料的 BET 比表面积达到 360 m2 g-1 comp.。值得注意的是,介孔 UiO-66-NH2 复合材料的孔隙率高达 0.2 cm3 g-1 comp,介孔率为 33%,高于之前的其他报告。实际上,经过介孔 UiO-66-NH2 处理的 PP 复合材料提高了甲基对氧磷(DMNP)的降解速度,其 t1/2 值比相同条件下测量的微孔 UiO-66-NH2 复合材料快 15 倍。在实际神经毒剂的降解过程中也观察到了类似的趋势。这些复合材料在过滤、保护和催化等各种应用领域都具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信