High-Throughput Equine Doping Controls on a Trapped Ion Mobility Quadrupole-Time-of-Flight Mass Spectrometer: Technical Considerations of dia/slice/prmPASEF Applied to the Long-Term Detection of Monoclonal Antibodies.

IF 2.6 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Vivian Delcourt, Justine Pinetre, Benjamin Chabot, Agnès Barnabé, Marie Cacault, Benoit Loup, François Becher, François Fenaille, Marie-Agnès Popot, Patrice Garcia, Ludovic Bailly-Chouriberry
{"title":"High-Throughput Equine Doping Controls on a Trapped Ion Mobility Quadrupole-Time-of-Flight Mass Spectrometer: Technical Considerations of dia/slice/prmPASEF Applied to the Long-Term Detection of Monoclonal Antibodies.","authors":"Vivian Delcourt, Justine Pinetre, Benjamin Chabot, Agnès Barnabé, Marie Cacault, Benoit Loup, François Becher, François Fenaille, Marie-Agnès Popot, Patrice Garcia, Ludovic Bailly-Chouriberry","doi":"10.1002/dta.3797","DOIUrl":null,"url":null,"abstract":"<p><p>Data-independent acquisition (DIA) methods employing a scanning quadrupole were recently described across multiple platforms. These strategies display remarkable performances in untargeted proteomics studies thanks to rapid duty cycles, leading to ultrashort liquid chromatography gradients while maintaining enough data points per peaks when coupled to fast-scanning mass analyzer. In this article, we perform the evaluation of three data acquisition strategies named diaPASEF,slicePASEF, and prmPASEF on a trapped ion mobility spectrometry quadrupole-time-of-flight (TIMS-Q-TOF) mass spectrometer for high-throughput doping control screening analyses. We report that slicePASEF outperforms diaPASEF and is almost as sensitive as prmPASEF in detecting humanized monoclonal antibodies for several weeks in equine plasma after administration. We observed that diaPASEF is still providing the best performances in untargeted proteomics studies employing high amounts of input materials, which is linked with the high complexity of slicePASEF data and current processing algorithms.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/dta.3797","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Data-independent acquisition (DIA) methods employing a scanning quadrupole were recently described across multiple platforms. These strategies display remarkable performances in untargeted proteomics studies thanks to rapid duty cycles, leading to ultrashort liquid chromatography gradients while maintaining enough data points per peaks when coupled to fast-scanning mass analyzer. In this article, we perform the evaluation of three data acquisition strategies named diaPASEF,slicePASEF, and prmPASEF on a trapped ion mobility spectrometry quadrupole-time-of-flight (TIMS-Q-TOF) mass spectrometer for high-throughput doping control screening analyses. We report that slicePASEF outperforms diaPASEF and is almost as sensitive as prmPASEF in detecting humanized monoclonal antibodies for several weeks in equine plasma after administration. We observed that diaPASEF is still providing the best performances in untargeted proteomics studies employing high amounts of input materials, which is linked with the high complexity of slicePASEF data and current processing algorithms.

利用捕获离子迁移率四极杆-飞行时间质谱仪进行高通量马匹兴奋剂控制:应用 dia/slice/prmPASEF 对单克隆抗体进行长期检测的技术考虑。
采用扫描四极杆的数据独立采集(DIA)方法最近在多个平台上得到了应用。这些策略在非靶向蛋白质组学研究中表现出卓越的性能,这得益于其快速的工作周期,当与快速扫描质量分析仪联用时,可实现超短的液相色谱梯度,同时每个峰保持足够的数据点。在本文中,我们在用于高通量掺杂控制筛选分析的阱式离子迁移谱四极杆飞行时间(TIMS-Q-TOF)质谱仪上评估了三种数据采集策略(diaPASEF、slicePASEF和prmPASEF)。我们报告说,在检测马血浆中的人源化单克隆抗体方面,slicePASEF 优于 diaPASEF,其灵敏度几乎与 prmPASEF 相当。我们发现,在使用大量输入材料的非靶向蛋白质组学研究中,diaPASEF 仍能提供最佳性能,这与 slicePASEF 数据的高复杂性和当前的处理算法有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Testing and Analysis
Drug Testing and Analysis BIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
5.90
自引率
24.10%
发文量
191
审稿时长
2.3 months
期刊介绍: As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances. In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds). Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信