Giant Hall Switching by Surface-State-Mediated Spin-Orbit Torque in a Hard Ferromagnetic Topological Insulator

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lixuan Tai, Haoran He, Su Kong Chong, Huairuo Zhang, Hanshen Huang, Gang Qiu, Yuxing Ren, Yaochen Li, Hung-Yu Yang, Ting-Hsun Yang, Xiang Dong, Bingqian Dai, Tao Qu, Qingyuan Shu, Quanjun Pan, Peng Zhang, Fei Xue, Jie Li, Albert V. Davydov, Kang L. Wang
{"title":"Giant Hall Switching by Surface-State-Mediated Spin-Orbit Torque in a Hard Ferromagnetic Topological Insulator","authors":"Lixuan Tai,&nbsp;Haoran He,&nbsp;Su Kong Chong,&nbsp;Huairuo Zhang,&nbsp;Hanshen Huang,&nbsp;Gang Qiu,&nbsp;Yuxing Ren,&nbsp;Yaochen Li,&nbsp;Hung-Yu Yang,&nbsp;Ting-Hsun Yang,&nbsp;Xiang Dong,&nbsp;Bingqian Dai,&nbsp;Tao Qu,&nbsp;Qingyuan Shu,&nbsp;Quanjun Pan,&nbsp;Peng Zhang,&nbsp;Fei Xue,&nbsp;Jie Li,&nbsp;Albert V. Davydov,&nbsp;Kang L. Wang","doi":"10.1002/adma.202406772","DOIUrl":null,"url":null,"abstract":"<p>Topological insulators (TI) and magnetic topological insulators (MTI) can apply highly efficient spin-orbit torque (SOT) and manipulate the magnetization with their unique topological surface states (TSS) with ultrahigh efficiency. Here, efficient SOT switching of a hard MTI, V-doped (Bi,Sb)<sub>2</sub>Te<sub>3</sub> (VBST), with a large coercive field that can prevent the influence of an external magnetic field, is demonstrated. A giant switched anomalous Hall resistance of 9.2 kΩ is realized, among the largest of all SOT systems, which makes the Hall channel a good readout and eliminates the need to fabricate complicated magnetic tunnel junction (MTJ) structures. The SOT switching current density can be reduced to 2.8 × 10<sup>5 </sup>A<sup> </sup>cm<sup>−2</sup>, indicating its high efficiency. Moreover, as the Fermi level is moved away from the Dirac point by both gate and composition tuning, VBST exhibits a transition from edge-state-mediated to surface-state-mediated transport, thus enhancing the SOT effective field to (1.56 ± 0.12) × 10<sup>−6 </sup>T<sup> </sup>A<sup>−1 </sup>cm<sup>2</sup> and the interfacial charge-to-spin conversion efficiency to 3.9 ± 0.3 nm<sup>−1</sup>. The findings establish VBST as an extraordinary candidate for energy-efficient magnetic memory devices.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202406772","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Topological insulators (TI) and magnetic topological insulators (MTI) can apply highly efficient spin-orbit torque (SOT) and manipulate the magnetization with their unique topological surface states (TSS) with ultrahigh efficiency. Here, efficient SOT switching of a hard MTI, V-doped (Bi,Sb)2Te3 (VBST), with a large coercive field that can prevent the influence of an external magnetic field, is demonstrated. A giant switched anomalous Hall resistance of 9.2 kΩ is realized, among the largest of all SOT systems, which makes the Hall channel a good readout and eliminates the need to fabricate complicated magnetic tunnel junction (MTJ) structures. The SOT switching current density can be reduced to 2.8 × 10A cm−2, indicating its high efficiency. Moreover, as the Fermi level is moved away from the Dirac point by both gate and composition tuning, VBST exhibits a transition from edge-state-mediated to surface-state-mediated transport, thus enhancing the SOT effective field to (1.56 ± 0.12) × 10−6 T A−1 cm2 and the interfacial charge-to-spin conversion efficiency to 3.9 ± 0.3 nm−1. The findings establish VBST as an extraordinary candidate for energy-efficient magnetic memory devices.

硬铁磁拓扑绝缘体中由表面状态介导的自旋轨道转矩产生的巨大霍尔开关。
拓扑绝缘体(TI)和磁性拓扑绝缘体(MTI)可以应用高效的自旋轨道转矩(SOT),并利用其独特的拓扑表面态(TSS)以超高效率操纵磁化。在这里,我们展示了一种硬质 MTI--V 掺杂 (Bi,Sb)2Te3 (VBST)--的高效自旋轨道开关,它具有一个大的矫顽力场,可以防止外部磁场的影响。实现了 9.2 kΩ 的巨大开关反常霍尔电阻,是所有 SOT 系统中最大的,这使得霍尔通道成为一个良好的读出通道,并且无需制造复杂的磁隧道结 (MTJ) 结构。SOT 开关电流密度可降低到 2.8 × 105 A cm-2,这表明它具有很高的效率。此外,当费米级通过栅极和成分调整远离狄拉克点时,VBST 表现出从边缘态介导传输到表面态介导传输的转变,从而将 SOT 有效场提高到 (1.56 ± 0.12) × 10-6 T A-1 cm2,并将界面电荷-自旋转换效率提高到 3.9 ± 0.3 nm-1。这些发现使 VBST 成为高能效磁存储器件的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信