{"title":"Bacteria and RNA virus inactivation with a high-irradiance UV-A source.","authors":"Karina Spunde, Zhanna Rudevica, Ksenija Korotkaja, Atis Skudra, Rolands Gudermanis, Anna Zajakina, Gita Revalde","doi":"10.1007/s43630-024-00634-2","DOIUrl":null,"url":null,"abstract":"<p><p>Disinfection with LED lamps is a promising ecological and economical substitute for mercury lamps. However, the optimal time/dose relationship needs to be established. Pathogen inactivation by UV-A primarily relies on induced reactive oxygen species (ROS) formation and subsequent oxidative damage. While effective against bacteria and enveloped viruses, non-enveloped viruses are less sensitive. In this study, we explored the disinfection properties of 10 W UV-A LED, emitting in the 365-375 nm range. UV-A at high values of irradiance (~ 0.46 W/cm<sup>2</sup>) can potentially induce ROS formation and direct photochemical damage of the pathogen nucleic acids, thus improving the disinfection. The UV-A inactivation was evaluated for the bacterium Escherichia coli (E. coli), non-enveloped RNA bacteriophage MS2, and enveloped mammalian RNA virus-Semliki Forest virus (SFV). The 4 log10 reduction doses for E. coli and SFV were 268 and 241 J/cm<sup>2</sup>, respectively. Furthermore, in irradiated E. coli, ROS production positively correlated with the inactivation rate. In the case of MS2 bacteriophage, the 2.5 log10 inactivation was achieved by 679 J/cm<sup>2</sup> within 30 min of irradiation. The results demonstrate significant disinfection efficiency of non-enveloped virus MS2 using high-irradiance UV-A. This suggests a potential strategy for improving the inactivation of UV-A-unsusceptible pathogens, particularly non-enveloped viruses. Additionally, the direct UV-A irradiation of self-replicating viral RNA from SFV led to a significant loss of viral gene expression in cells transfected with the irradiated RNA. Therefore, the virus inactivation mechanism of high-irradiance UV-A LED can be partially determined by the direct damage of viral RNA.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"1841-1856"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-024-00634-2","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Disinfection with LED lamps is a promising ecological and economical substitute for mercury lamps. However, the optimal time/dose relationship needs to be established. Pathogen inactivation by UV-A primarily relies on induced reactive oxygen species (ROS) formation and subsequent oxidative damage. While effective against bacteria and enveloped viruses, non-enveloped viruses are less sensitive. In this study, we explored the disinfection properties of 10 W UV-A LED, emitting in the 365-375 nm range. UV-A at high values of irradiance (~ 0.46 W/cm2) can potentially induce ROS formation and direct photochemical damage of the pathogen nucleic acids, thus improving the disinfection. The UV-A inactivation was evaluated for the bacterium Escherichia coli (E. coli), non-enveloped RNA bacteriophage MS2, and enveloped mammalian RNA virus-Semliki Forest virus (SFV). The 4 log10 reduction doses for E. coli and SFV were 268 and 241 J/cm2, respectively. Furthermore, in irradiated E. coli, ROS production positively correlated with the inactivation rate. In the case of MS2 bacteriophage, the 2.5 log10 inactivation was achieved by 679 J/cm2 within 30 min of irradiation. The results demonstrate significant disinfection efficiency of non-enveloped virus MS2 using high-irradiance UV-A. This suggests a potential strategy for improving the inactivation of UV-A-unsusceptible pathogens, particularly non-enveloped viruses. Additionally, the direct UV-A irradiation of self-replicating viral RNA from SFV led to a significant loss of viral gene expression in cells transfected with the irradiated RNA. Therefore, the virus inactivation mechanism of high-irradiance UV-A LED can be partially determined by the direct damage of viral RNA.