Periklis X. Kolagkis , Stamatis K. Serviou , Naya A. Stini , Vera P. Demertzidou , Efthymios T. Poursaitidis , Eirini M. Galathri , Olga G. Mountanea , Elpida Skolia , Christoforos G. Kokotos
{"title":"Deciphering the Knoevenagel condensation: towards a catalyst-free and water-mediated process†","authors":"Periklis X. Kolagkis , Stamatis K. Serviou , Naya A. Stini , Vera P. Demertzidou , Efthymios T. Poursaitidis , Eirini M. Galathri , Olga G. Mountanea , Elpida Skolia , Christoforos G. Kokotos","doi":"10.1039/d4ob01420k","DOIUrl":null,"url":null,"abstract":"<div><div>The Knoevenagel condensation constitutes one of the most well-studied and crucial transformations in organic chemistry, since it facilitates the synthesis of numerous valuable compounds. With the advent of green chemistry, several alternative protocols for the Knoevenagel reaction have been introduced and catalyst-free approaches to the Knoevenagel condensation have also been mentioned, however the harsh temperatures employed and the limited substrate scope restricted their application. Herein, we have performed an extensive study on the catalyst-free and water-mediated Knoevenagel reaction, with specific focus on optimising the green parameters and metrics of our methodology. Additionally, we directly compared our approach with previous catalyst-free methods, while providing a fast assembly of multiple compounds in parallel.</div></div>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":"22 41","pages":"Pages 8293-8299"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ob/d4ob01420k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1477052024008383","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The Knoevenagel condensation constitutes one of the most well-studied and crucial transformations in organic chemistry, since it facilitates the synthesis of numerous valuable compounds. With the advent of green chemistry, several alternative protocols for the Knoevenagel reaction have been introduced and catalyst-free approaches to the Knoevenagel condensation have also been mentioned, however the harsh temperatures employed and the limited substrate scope restricted their application. Herein, we have performed an extensive study on the catalyst-free and water-mediated Knoevenagel reaction, with specific focus on optimising the green parameters and metrics of our methodology. Additionally, we directly compared our approach with previous catalyst-free methods, while providing a fast assembly of multiple compounds in parallel.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.