{"title":"Non-Radiative Deactivation in Isolated Quinoline.","authors":"Floriane Sturm, Christoph Herok, Ingo Fischer","doi":"10.1021/acs.jpca.4c04208","DOIUrl":null,"url":null,"abstract":"<p><p>The photophysics of the S<sub>2</sub> <sup>1</sup>(ππ*) state of the polycyclic aromatic nitrogen-containing hydrocarbon (PANH) quinoline is investigated in a free jet using a picosecond laser system. A [1 + 1] multiphoton ionization spectrum yields the S<sub>2</sub> origin at around 32 200 cm<sup>-1</sup> and reveals several vibronic bands. In time-resolved experiments, quinoline is then excited between 312.2 and 279.7 nm. Probe wavelengths of 351 and 263.5 nm are employed. The dynamics is monitored by time-resolved photoelectron imaging. The images reveal a short-lived band at high electron kinetic energies with a ps lifetime and a band at lower electron kinetic energies that shows an offset at long delay times. In comparison with previous work, the offset is assigned to ionization from the T<sub>1</sub> state. Lifetimes decrease from 45 ps at the S<sub>2</sub> origin to 11 ps at +3550 cm<sup>-1</sup>. Most likely, the S<sub>2</sub> <sup>1</sup>(ππ*) state deactivates by internal conversion to the S<sub>1</sub> <sup>1</sup>(nπ*) state, followed by intersystem crossing to the triplet manifold.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The photophysics of the S21(ππ*) state of the polycyclic aromatic nitrogen-containing hydrocarbon (PANH) quinoline is investigated in a free jet using a picosecond laser system. A [1 + 1] multiphoton ionization spectrum yields the S2 origin at around 32 200 cm-1 and reveals several vibronic bands. In time-resolved experiments, quinoline is then excited between 312.2 and 279.7 nm. Probe wavelengths of 351 and 263.5 nm are employed. The dynamics is monitored by time-resolved photoelectron imaging. The images reveal a short-lived band at high electron kinetic energies with a ps lifetime and a band at lower electron kinetic energies that shows an offset at long delay times. In comparison with previous work, the offset is assigned to ionization from the T1 state. Lifetimes decrease from 45 ps at the S2 origin to 11 ps at +3550 cm-1. Most likely, the S21(ππ*) state deactivates by internal conversion to the S11(nπ*) state, followed by intersystem crossing to the triplet manifold.