Zeyu Shao, Hao Luo, Thi Hanh Quyen Nguyen, Edgar H H Wong
{"title":"Effects of Secondary Amine and Molecular Weight on the Biological Activities of Cationic Amphipathic Antimicrobial Macromolecules.","authors":"Zeyu Shao, Hao Luo, Thi Hanh Quyen Nguyen, Edgar H H Wong","doi":"10.1021/acs.biomac.4c01137","DOIUrl":null,"url":null,"abstract":"<p><p>Cationic amphipathic antimicrobial agents inspired by antimicrobial peptides (AMPs) have shown potential in combating multidrug-resistant bacteria because of minimal resistance development. Here, this study focuses on the development of novel cationic amphipathic macromolecules in the form of dendrons and polymers with different molecular weights that employ secondary amine piperidine derivative as the cationic moiety. Generally, secondary amine compounds, especially at low molecular weights, have stronger bacteriostatic, bactericidal, and inner membrane disruption abilities than those of their primary amine counterparts. Low molecular weight <b>D2</b> dendrons with two cationic centers and one hydrophobic dodecyl chain produce outstanding synergistic activity with the antibiotic rifampicin against <i>Escherichia coli</i>, where one-eighth of the standalone dose of <b>D2</b> dendrons could reduce the concentration of rifampicin required by up to 4000-fold. The low molecular weight compounds are also less toxic and therefore have higher therapeutic index values compared to compounds with larger molecular weights. This study thus reveals key information that may inform the design of future synthetic AMPs and mimics, specifically, the design of low-molecular-weight compounds with secondary amine as the cationic center to achieve high antimicrobial potency and biocompatibility.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"6899-6912"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01137","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cationic amphipathic antimicrobial agents inspired by antimicrobial peptides (AMPs) have shown potential in combating multidrug-resistant bacteria because of minimal resistance development. Here, this study focuses on the development of novel cationic amphipathic macromolecules in the form of dendrons and polymers with different molecular weights that employ secondary amine piperidine derivative as the cationic moiety. Generally, secondary amine compounds, especially at low molecular weights, have stronger bacteriostatic, bactericidal, and inner membrane disruption abilities than those of their primary amine counterparts. Low molecular weight D2 dendrons with two cationic centers and one hydrophobic dodecyl chain produce outstanding synergistic activity with the antibiotic rifampicin against Escherichia coli, where one-eighth of the standalone dose of D2 dendrons could reduce the concentration of rifampicin required by up to 4000-fold. The low molecular weight compounds are also less toxic and therefore have higher therapeutic index values compared to compounds with larger molecular weights. This study thus reveals key information that may inform the design of future synthetic AMPs and mimics, specifically, the design of low-molecular-weight compounds with secondary amine as the cationic center to achieve high antimicrobial potency and biocompatibility.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.