Representation of Learning Outcomes Stipulated by the Intended Curriculum in Four Series of Chemistry Textbooks: Based on Legitimation Code Theory

IF 2.2 3区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Bing Wei, Zhangyu Zhan, Zhimeng Jiang, Linwei Yu
{"title":"Representation of Learning Outcomes Stipulated by the Intended Curriculum in Four Series of Chemistry Textbooks: Based on Legitimation Code Theory","authors":"Bing Wei, Zhangyu Zhan, Zhimeng Jiang, Linwei Yu","doi":"10.1007/s11165-024-10198-x","DOIUrl":null,"url":null,"abstract":"<p>Intellectual demands of learning outcomes in the intended curriculum have always been a concern across the field of science education. In particular, the representation of those learning outcomes stipulated by the intended curriculum in science textbooks has become a big issue for both science curriculum studies and science teaching practice. To address this issue, the concepts of semantic gravity (SG) and semantic density (SD), as part of the dimension of Semantics from Legitimation Code Theory (LCT), were employed in this study with the purpose of examining the degrees of abstraction and complexity of chemical knowledge under the topic “common substances” in four series of chemistry textbooks, which were compiled in compliance with the national chemistry curriculum of the compulsory education (Grades 1–9) in China. Based on the principles of LCT (Semantics), a new scheme for differentiating the strengths of SG and SD was developed in the current study to analyze the representation of 34 knowledge points in the four series of chemistry textbooks. Results show that these knowledge points are embodied with less complexity and avoid more abstraction in the four series of chemistry textbooks. Specifically, it was found that the overwhelming majority of the knowledge points are represented with strong semantic gravity and weak semantic density. Uniqueness was also identified with individual series of chemistry textbooks. The implications of the results of this study are discussed for the effective representation of science (chemistry) knowledge in textbooks.</p>","PeriodicalId":47988,"journal":{"name":"Research in Science Education","volume":"24 4 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11165-024-10198-x","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

Intellectual demands of learning outcomes in the intended curriculum have always been a concern across the field of science education. In particular, the representation of those learning outcomes stipulated by the intended curriculum in science textbooks has become a big issue for both science curriculum studies and science teaching practice. To address this issue, the concepts of semantic gravity (SG) and semantic density (SD), as part of the dimension of Semantics from Legitimation Code Theory (LCT), were employed in this study with the purpose of examining the degrees of abstraction and complexity of chemical knowledge under the topic “common substances” in four series of chemistry textbooks, which were compiled in compliance with the national chemistry curriculum of the compulsory education (Grades 1–9) in China. Based on the principles of LCT (Semantics), a new scheme for differentiating the strengths of SG and SD was developed in the current study to analyze the representation of 34 knowledge points in the four series of chemistry textbooks. Results show that these knowledge points are embodied with less complexity and avoid more abstraction in the four series of chemistry textbooks. Specifically, it was found that the overwhelming majority of the knowledge points are represented with strong semantic gravity and weak semantic density. Uniqueness was also identified with individual series of chemistry textbooks. The implications of the results of this study are discussed for the effective representation of science (chemistry) knowledge in textbooks.

Abstract Image

四套化学教科书中预期课程所规定的学习成果的体现:基于合法化规范理论
预期课程对学习成果的智力要求一直是整个科学教育领域关注的问题。特别是如何在科学教科书中体现预期课程所规定的学习成果,已成为科学课程研究和科学教学实践中的一个大问题。针对这一问题,本研究采用了合法化规范理论(LCT)中语义维度的语义引力(SG)和语义密度(SD)的概念,以中国义务教育化学课程(1-9 年级)为对象,考察了四套化学教科书中 "常见物质 "这一主题下化学知识的抽象程度和复杂程度。本研究基于 LCT(语义学)原理,提出了区分 SG 和 SD 强度的新方案,对四套化学教科书中 34 个知识点的表征进行了分析。结果表明,这些知识点在四个系列的化学教科书中的体现复杂度较低,避免了较多的抽象化。具体而言,研究发现绝大多数知识点的语义重心较强,语义密度较弱。个别系列的化学教科书还具有独特性。本研究结果对教科书有效表述科学(化学)知识的意义进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research in Science Education
Research in Science Education EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
6.40
自引率
8.70%
发文量
45
期刊介绍: 2020 Five-Year Impact Factor: 4.021 2020 Impact Factor: 5.439 Ranking: 107/1319 (Education) – Scopus 2020 CiteScore 34.7 – Scopus Research in Science Education (RISE ) is highly regarded and widely recognised as a leading international journal for the promotion of scholarly science education research that is of interest to a wide readership. RISE publishes scholarly work that promotes science education research in all contexts and at all levels of education. This intention is aligned with the goals of Australasian Science Education Research Association (ASERA), the association connected with the journal. You should consider submitting your manscript to RISE if your research: Examines contexts such as early childhood, primary, secondary, tertiary, workplace, and informal learning as they relate to science education; and Advances our knowledge in science education research rather than reproducing what we already know. RISE will consider scholarly works that explore areas such as STEM, health, environment, cognitive science, neuroscience, psychology and higher education where science education is forefronted. The scholarly works of interest published within RISE reflect and speak to a diversity of opinions, approaches and contexts. Additionally, the journal’s editorial team welcomes a diversity of form in relation to science education-focused submissions. With this in mind, RISE seeks to publish empirical research papers. Empircal contributions are: Theoretically or conceptually grounded; Relevant to science education theory and practice; Highlight limitations of the study; and Identify possible future research opportunities. From time to time, we commission independent reviewers to undertake book reviews of recent monographs, edited collections and/or textbooks. Before you submit your manuscript to RISE, please consider the following checklist. Your paper is: No longer than 6000 words, including references. Sufficiently proof read to ensure strong grammar, syntax, coherence and good readability; Explicitly stating the significant and/or innovative contribution to the body of knowledge in your field in science education; Internationalised in the sense that your work has relevance beyond your context to a broader audience; and Making a contribution to the ongoing conversation by engaging substantively with prior research published in RISE. While we encourage authors to submit papers to a maximum length of 6000 words, in rare cases where the authors make a persuasive case that a work makes a highly significant original contribution to knowledge in science education, the editors may choose to publish longer works.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信