Li-ion battery design through microstructural optimization using generative AI

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-09-23 DOI:10.1016/j.matt.2024.08.014
Steve Kench, Isaac Squires, Amir Dahari, Ferran Brosa Planella, Scott A. Roberts, Samuel J. Cooper
{"title":"Li-ion battery design through microstructural optimization using generative AI","authors":"Steve Kench, Isaac Squires, Amir Dahari, Ferran Brosa Planella, Scott A. Roberts, Samuel J. Cooper","doi":"10.1016/j.matt.2024.08.014","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries are used across various applications, necessitating tailored cell designs to enhance performance. Optimizing electrode manufacturing parameters is a key route to achieving this, as these parameters directly influence the microstructure and performance of the cells. However, linking process parameters to performance is complex, and experimental or modeling campaigns are often slow and expensive. This study introduces a fast computational optimization framework for electrode manufacturing parameters. A generative model, trained on a small dataset of microstructural images associated with different manufacturing parameters, efficiently generates representative microstructures for new parameters. This model is integrated into a Bayesian optimization loop that includes microstructure generation, characterization, and simulation, aiming to find optimal manufacturing parameters for a particular application. Significant improvement in the energy density of a 4680 cell is achieved through bespoke cell design, highlighting the importance of cell-scale normalization. The framework’s modularity allows its application to various advanced materials manufacturing scenarios.","PeriodicalId":388,"journal":{"name":"Matter","volume":"42 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.08.014","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries are used across various applications, necessitating tailored cell designs to enhance performance. Optimizing electrode manufacturing parameters is a key route to achieving this, as these parameters directly influence the microstructure and performance of the cells. However, linking process parameters to performance is complex, and experimental or modeling campaigns are often slow and expensive. This study introduces a fast computational optimization framework for electrode manufacturing parameters. A generative model, trained on a small dataset of microstructural images associated with different manufacturing parameters, efficiently generates representative microstructures for new parameters. This model is integrated into a Bayesian optimization loop that includes microstructure generation, characterization, and simulation, aiming to find optimal manufacturing parameters for a particular application. Significant improvement in the energy density of a 4680 cell is achieved through bespoke cell design, highlighting the importance of cell-scale normalization. The framework’s modularity allows its application to various advanced materials manufacturing scenarios.

Abstract Image

利用生成式人工智能通过微结构优化设计锂离子电池
锂离子电池应用广泛,需要量身定制的电池设计来提高性能。优化电极制造参数是实现这一目标的关键途径,因为这些参数直接影响电池的微观结构和性能。然而,将工艺参数与性能联系起来非常复杂,而且实验或建模活动通常既缓慢又昂贵。本研究为电极制造参数引入了一个快速计算优化框架。在与不同制造参数相关的微观结构图像的小型数据集上训练的生成模型,可有效生成新参数的代表性微观结构。该模型被集成到贝叶斯优化循环中,其中包括微结构生成、表征和模拟,旨在为特定应用找到最佳制造参数。通过定制电池设计,4680 电池的能量密度得到显著提高,突出了电池尺度规范化的重要性。该框架的模块化使其能够应用于各种先进材料制造方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信