Kuldeep Mahato, Tamoghna Saha, Shichao Ding, Samar S. Sandhu, An-Yi Chang, Joseph Wang
{"title":"Hybrid multimodal wearable sensors for comprehensive health monitoring","authors":"Kuldeep Mahato, Tamoghna Saha, Shichao Ding, Samar S. Sandhu, An-Yi Chang, Joseph Wang","doi":"10.1038/s41928-024-01247-4","DOIUrl":null,"url":null,"abstract":"Wearable bioelectronic sensors are often used for health monitoring but are typically limited to a few physical or chemical parameters, which hinders their ability to provide a complete health assessment. Recently, wearable sensor platforms have been developed that can simultaneously and continuously record multiple biophysical and biochemical signals. These devices take advantage of advances in electronic device fabrication and miniaturization, bioelectronic sensors, and flexible materials. However, compared with existing wearable systems, which mostly contain either biochemical or biophysical sensors, hybrid multimodal wearable patches present a number of distinct challenges for further advancement. Here, we examine the development of such hybrid multimodal wearable sensors and explore their potential applications in tracking the health and disease status of different users. We highlight the key biomarkers and vital signs (related to various pathophysiological conditions) that hybrid bioelectronic sensor systems must be designed around. We also explore how artificial intelligence could be integrated with these hybrid multimodal sensors to offer wearers the ability to assess their health status in real time. This Review examines the development and potential of wearable sensor systems that use multiple physical and chemical sensing modalities to assess human health.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 9","pages":"735-750"},"PeriodicalIF":33.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01247-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable bioelectronic sensors are often used for health monitoring but are typically limited to a few physical or chemical parameters, which hinders their ability to provide a complete health assessment. Recently, wearable sensor platforms have been developed that can simultaneously and continuously record multiple biophysical and biochemical signals. These devices take advantage of advances in electronic device fabrication and miniaturization, bioelectronic sensors, and flexible materials. However, compared with existing wearable systems, which mostly contain either biochemical or biophysical sensors, hybrid multimodal wearable patches present a number of distinct challenges for further advancement. Here, we examine the development of such hybrid multimodal wearable sensors and explore their potential applications in tracking the health and disease status of different users. We highlight the key biomarkers and vital signs (related to various pathophysiological conditions) that hybrid bioelectronic sensor systems must be designed around. We also explore how artificial intelligence could be integrated with these hybrid multimodal sensors to offer wearers the ability to assess their health status in real time. This Review examines the development and potential of wearable sensor systems that use multiple physical and chemical sensing modalities to assess human health.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.