Constructing Organic Phosphorescent Scintillators with Enhanced Triplet Exciton Utilization Through Multi‐Mode Radioluminescence for Efficient X‐Ray Imaging

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huanhuan Li, Yitong Liu, Wei Zhao, Hengyu Cao, Xin Yan, Shuman Zhang, Xi Yan, Hui Li, Ye Tao, Gaozhan Xie, Wei Li, Runfeng Chen, Wei Huang
{"title":"Constructing Organic Phosphorescent Scintillators with Enhanced Triplet Exciton Utilization Through Multi‐Mode Radioluminescence for Efficient X‐Ray Imaging","authors":"Huanhuan Li, Yitong Liu, Wei Zhao, Hengyu Cao, Xin Yan, Shuman Zhang, Xi Yan, Hui Li, Ye Tao, Gaozhan Xie, Wei Li, Runfeng Chen, Wei Huang","doi":"10.1002/adma.202409338","DOIUrl":null,"url":null,"abstract":"The development of organic phosphorescent scintillators with high exciton utilization efficiency has attracted significant attention but remains a difficult challenge because of the inherent spin‐forbidden feature of X‐ray‐induced triplet excitons. Herein, a design strategy is proposed to develop organic phosphorescent scintillators through thermally activated exciton release to convert stabilized spin‐forbidden triplet excitons to spin‐allowed singlet excitons, which enables singlet exciton‐dominated multi‐mode emission simultaneously from the lowest singlet, triplet, and stabilized triplet states. The resultant scintillators demonstrate a maximum photoluminescence efficiency of 65.8% and a minimum X‐ray radiation detection limit of 110 nGy s<jats:sup>−1</jats:sup>; this allows efficient radiography imaging with a spatial resolution of ≈10.0 lp mm<jats:sup>−1</jats:sup>. This study advances the fundamental understanding of exciton dynamics under X‐ray excitation, significantly broadening the practical use of phosphorescent materials for safety‐critical industries and medical diagnostics.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202409338","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of organic phosphorescent scintillators with high exciton utilization efficiency has attracted significant attention but remains a difficult challenge because of the inherent spin‐forbidden feature of X‐ray‐induced triplet excitons. Herein, a design strategy is proposed to develop organic phosphorescent scintillators through thermally activated exciton release to convert stabilized spin‐forbidden triplet excitons to spin‐allowed singlet excitons, which enables singlet exciton‐dominated multi‐mode emission simultaneously from the lowest singlet, triplet, and stabilized triplet states. The resultant scintillators demonstrate a maximum photoluminescence efficiency of 65.8% and a minimum X‐ray radiation detection limit of 110 nGy s−1; this allows efficient radiography imaging with a spatial resolution of ≈10.0 lp mm−1. This study advances the fundamental understanding of exciton dynamics under X‐ray excitation, significantly broadening the practical use of phosphorescent materials for safety‐critical industries and medical diagnostics.
通过多模式放射发光构建具有增强的三重激子利用率的有机磷光闪烁体,实现高效 X 射线成像
具有高激子利用效率的有机磷光闪烁体的开发备受关注,但由于 X 射线诱导的三重激子具有固有的自旋禁用特性,因此仍是一项艰巨的挑战。本文提出了一种设计策略,通过热激活激子释放,将稳定的自旋禁用三重态激子转换为自旋允许的单重态激子,从而实现单重态激子主导的多模式发射,同时从最低的单重态、三重态和稳定的三重态发射有机磷光闪烁体。由此产生的闪烁体显示出 65.8% 的最高光致发光效率和 110 nGy s-1 的最低 X 射线辐射探测极限;这使得它能以 ≈10.0 lp mm-1 的空间分辨率进行高效的射线成像。这项研究推进了对 X 射线激发下激子动力学的基本认识,极大地拓宽了磷光材料在安全关键型工业和医疗诊断领域的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信