Nikhila C. Paranamana, Amit K. Datta, Quinton K. Wyatt, Ryan C. Gettler, Andreas Werbrouck, Matthias J. Young
{"title":"Molecular layer deposition of polyhydroquinone thin films for Li-ion battery applications","authors":"Nikhila C. Paranamana, Amit K. Datta, Quinton K. Wyatt, Ryan C. Gettler, Andreas Werbrouck, Matthias J. Young","doi":"10.1002/aic.18613","DOIUrl":null,"url":null,"abstract":"<p>Many next-generation materials for Li-ion batteries are limited by material instabilities. To stabilize these materials, ultrathin, protective coatings are needed that conduct both lithium ions and electrons. Here, we demonstrate a hybrid chemistry combining molecular layer deposition (MLD) of trimethylaluminum (TMA) and p-hydroquinone (HQ) with oxidative molecular layer deposition (oMLD) of molybdenum pentachloride (MoCl<sub>5</sub>) and HQ to enable vapor-phase molecular layer growth of poly(p-hydroquinone) (PHQ)—a mixed electron and lithium ion conducting polymer. We employ quartz crystal microbalance (QCM) studies to understand the chemical mechanism and demonstrate controlled linear growth with a 0.5 nm/cycle growth rate. Spectroscopic characterization indicates that this hybrid MLD/oMLD chemistry polymerizes surface HQ monomers from the TMA-HQ chemistry to produce PHQ. The polymerization to PHQ improves air stability over MLD TMA-HQ films without crosslinking. Electrochemical measurements on hybrid MLD/oMLD films indicate electronic conductivity of ~10<sup>−9</sup> S/cm and a Li-ion conductivity of ~10<sup>−4</sup> S/cm. While these coatings show promise for Li-ion battery applications, this work focuses on establishing the coating chemistry and future studies are needed to examine the stability, structure, and cycling performance of these coatings in full Li-ion cells.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aic.18613","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Many next-generation materials for Li-ion batteries are limited by material instabilities. To stabilize these materials, ultrathin, protective coatings are needed that conduct both lithium ions and electrons. Here, we demonstrate a hybrid chemistry combining molecular layer deposition (MLD) of trimethylaluminum (TMA) and p-hydroquinone (HQ) with oxidative molecular layer deposition (oMLD) of molybdenum pentachloride (MoCl5) and HQ to enable vapor-phase molecular layer growth of poly(p-hydroquinone) (PHQ)—a mixed electron and lithium ion conducting polymer. We employ quartz crystal microbalance (QCM) studies to understand the chemical mechanism and demonstrate controlled linear growth with a 0.5 nm/cycle growth rate. Spectroscopic characterization indicates that this hybrid MLD/oMLD chemistry polymerizes surface HQ monomers from the TMA-HQ chemistry to produce PHQ. The polymerization to PHQ improves air stability over MLD TMA-HQ films without crosslinking. Electrochemical measurements on hybrid MLD/oMLD films indicate electronic conductivity of ~10−9 S/cm and a Li-ion conductivity of ~10−4 S/cm. While these coatings show promise for Li-ion battery applications, this work focuses on establishing the coating chemistry and future studies are needed to examine the stability, structure, and cycling performance of these coatings in full Li-ion cells.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.