Molecular layer deposition of polyhydroquinone thin films for Li-ion battery applications

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2024-09-23 DOI:10.1002/aic.18613
Nikhila C. Paranamana, Amit K. Datta, Quinton K. Wyatt, Ryan C. Gettler, Andreas Werbrouck, Matthias J. Young
{"title":"Molecular layer deposition of polyhydroquinone thin films for Li-ion battery applications","authors":"Nikhila C. Paranamana,&nbsp;Amit K. Datta,&nbsp;Quinton K. Wyatt,&nbsp;Ryan C. Gettler,&nbsp;Andreas Werbrouck,&nbsp;Matthias J. Young","doi":"10.1002/aic.18613","DOIUrl":null,"url":null,"abstract":"<p>Many next-generation materials for Li-ion batteries are limited by material instabilities. To stabilize these materials, ultrathin, protective coatings are needed that conduct both lithium ions and electrons. Here, we demonstrate a hybrid chemistry combining molecular layer deposition (MLD) of trimethylaluminum (TMA) and p-hydroquinone (HQ) with oxidative molecular layer deposition (oMLD) of molybdenum pentachloride (MoCl<sub>5</sub>) and HQ to enable vapor-phase molecular layer growth of poly(p-hydroquinone) (PHQ)—a mixed electron and lithium ion conducting polymer. We employ quartz crystal microbalance (QCM) studies to understand the chemical mechanism and demonstrate controlled linear growth with a 0.5 nm/cycle growth rate. Spectroscopic characterization indicates that this hybrid MLD/oMLD chemistry polymerizes surface HQ monomers from the TMA-HQ chemistry to produce PHQ. The polymerization to PHQ improves air stability over MLD TMA-HQ films without crosslinking. Electrochemical measurements on hybrid MLD/oMLD films indicate electronic conductivity of ~10<sup>−9</sup> S/cm and a Li-ion conductivity of ~10<sup>−4</sup> S/cm. While these coatings show promise for Li-ion battery applications, this work focuses on establishing the coating chemistry and future studies are needed to examine the stability, structure, and cycling performance of these coatings in full Li-ion cells.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aic.18613","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Many next-generation materials for Li-ion batteries are limited by material instabilities. To stabilize these materials, ultrathin, protective coatings are needed that conduct both lithium ions and electrons. Here, we demonstrate a hybrid chemistry combining molecular layer deposition (MLD) of trimethylaluminum (TMA) and p-hydroquinone (HQ) with oxidative molecular layer deposition (oMLD) of molybdenum pentachloride (MoCl5) and HQ to enable vapor-phase molecular layer growth of poly(p-hydroquinone) (PHQ)—a mixed electron and lithium ion conducting polymer. We employ quartz crystal microbalance (QCM) studies to understand the chemical mechanism and demonstrate controlled linear growth with a 0.5 nm/cycle growth rate. Spectroscopic characterization indicates that this hybrid MLD/oMLD chemistry polymerizes surface HQ monomers from the TMA-HQ chemistry to produce PHQ. The polymerization to PHQ improves air stability over MLD TMA-HQ films without crosslinking. Electrochemical measurements on hybrid MLD/oMLD films indicate electronic conductivity of ~10−9 S/cm and a Li-ion conductivity of ~10−4 S/cm. While these coatings show promise for Li-ion battery applications, this work focuses on establishing the coating chemistry and future studies are needed to examine the stability, structure, and cycling performance of these coatings in full Li-ion cells.

用于锂离子电池的聚氢醌薄膜的分子层沉积
许多用于锂离子电池的新一代材料都受到材料不稳定性的限制。为了稳定这些材料,需要同时传导锂离子和电子的超薄保护涂层。在这里,我们展示了一种混合化学方法,它将三甲基铝(TMA)和对氢醌(HQ)的分子层沉积(MLD)与五氯化钼(MoCl5)和对氢醌的氧化分子层沉积(oMLD)相结合,实现了聚(对氢醌)(PHQ)的气相分子层生长--一种混合电子和锂离子传导聚合物。我们利用石英晶体微天平 (QCM) 研究来了解化学机制,并展示了 0.5 nm/周期生长率的受控线性生长。光谱表征表明,这种混合 MLD/oMLD 化学反应可聚合 TMA-HQ 化学反应中的表面 HQ 单体,生成 PHQ。与没有交联的 MLD TMA-HQ 薄膜相比,聚合成 PHQ 提高了空气稳定性。对混合 MLD/oMLD 薄膜进行的电化学测量表明,其电子电导率约为 10-9 S/cm,锂离子电导率约为 10-4 S/cm。虽然这些涂层显示了锂离子电池应用的前景,但这项工作的重点是建立涂层的化学性质,未来还需要进行研究,以检查这些涂层在完整锂离子电池中的稳定性、结构和循环性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信