Yong Peng Duan, Ya Zhi Yang, Yue Cao, Hao Ming Li, Ze Wei Hu, Ri Liang Cao, Zhen Yu Liu
{"title":"Path planning optimization for swine manure-cleaning robots through enhanced slime mold algorithm with cellular automata","authors":"Yong Peng Duan, Ya Zhi Yang, Yue Cao, Hao Ming Li, Ze Wei Hu, Ri Liang Cao, Zhen Yu Liu","doi":"10.1111/asj.13992","DOIUrl":null,"url":null,"abstract":"<p>One of the primary challenges for robotic manure cleaners in pig farming is to plan the shortest path to designated cleaning points under specified conditions with minimal processing cost and time, while avoiding collisions. However, pigs are randomly distributed in actual pig farms, which obstructs the robots' movement and complicates the rapid determination of optimal solutions. To address these issues, this study introduces the concept of interaction among cellular automaton cell neighborhoods and proposes the Cellular Automata Slime Mold Algorithm (CASMA). This enhanced slime mold algorithm accelerates convergence speed and improves search accuracy. To validate its effectiveness, CASMA was compared with four metaheuristic algorithms (ACO, FA, PSO, and WPA) through performance tests and simulated experiments. Results demonstrate that in complex pigsty environments with varying numbers of pigs, CASMA reduces average step consumption by 8.03%, 1.61%, 0.99%, and 4.26% compared with these algorithms and saves processing time by averages of 13.20%, 20.11%, 10.86%, and 6.4%, respectively. In addition, in dynamic obstacle experiments, CASMA achieved average time savings of 48.27% and 56.28% compared with A* and TS, respectively, while reducing step consumption. Overall, CASMA enhances the efficiency of manure-cleaning robots in pig farms, thereby improving animal welfare.</p>","PeriodicalId":7890,"journal":{"name":"Animal Science Journal","volume":"95 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Science Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/asj.13992","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
One of the primary challenges for robotic manure cleaners in pig farming is to plan the shortest path to designated cleaning points under specified conditions with minimal processing cost and time, while avoiding collisions. However, pigs are randomly distributed in actual pig farms, which obstructs the robots' movement and complicates the rapid determination of optimal solutions. To address these issues, this study introduces the concept of interaction among cellular automaton cell neighborhoods and proposes the Cellular Automata Slime Mold Algorithm (CASMA). This enhanced slime mold algorithm accelerates convergence speed and improves search accuracy. To validate its effectiveness, CASMA was compared with four metaheuristic algorithms (ACO, FA, PSO, and WPA) through performance tests and simulated experiments. Results demonstrate that in complex pigsty environments with varying numbers of pigs, CASMA reduces average step consumption by 8.03%, 1.61%, 0.99%, and 4.26% compared with these algorithms and saves processing time by averages of 13.20%, 20.11%, 10.86%, and 6.4%, respectively. In addition, in dynamic obstacle experiments, CASMA achieved average time savings of 48.27% and 56.28% compared with A* and TS, respectively, while reducing step consumption. Overall, CASMA enhances the efficiency of manure-cleaning robots in pig farms, thereby improving animal welfare.
期刊介绍:
Animal Science Journal (a continuation of Animal Science and Technology) is the official journal of the Japanese Society of Animal Science (JSAS) and publishes Original Research Articles (full papers and rapid communications) in English in all fields of animal and poultry science: genetics and breeding, genetic engineering, reproduction, embryo manipulation, nutrition, feeds and feeding, physiology, anatomy, environment and behavior, animal products (milk, meat, eggs and their by-products) and their processing, and livestock economics. Animal Science Journal will invite Review Articles in consultations with Editors. Submission to the Journal is open to those who are interested in animal science.