Acid-Doping Induced Phase Separation for Shaping Phase Morphology and Enhancing Performance of Polymer Electrolyte Membranes

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Joseph Jang, Do-Hyung Kim, Chanho Pak* and Jae-Suk Lee*, 
{"title":"Acid-Doping Induced Phase Separation for Shaping Phase Morphology and Enhancing Performance of Polymer Electrolyte Membranes","authors":"Joseph Jang,&nbsp;Do-Hyung Kim,&nbsp;Chanho Pak* and Jae-Suk Lee*,&nbsp;","doi":"10.1021/acsaem.4c0154710.1021/acsaem.4c01547","DOIUrl":null,"url":null,"abstract":"<p >The control of nanostructure and phase morphology within electrolytes is crucial in determining the performance of electrochemical devices, such as high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Random copolymers have been extensively utilized in this field due to their straightforward synthetic methods compared to block copolymers. However, achieving precise control over the nanostructure of these random copolymers is challenging, owing to the irregular distribution of hydrophilic and hydrophobic segments along their backbone. Herein, we introduce the acid doping-induced phase separation of random copolymers containing basic moieties driven by base–acid interaction with phosphoric acid (PA). Small-angle X-ray scattering analysis revealed that increased functionalization led to phase separation and inversion, indicative of dispersed PA distribution, impacting membrane morphology and phase dynamics. The phase morphology control improves proton conductivity and PA retention up to 130% and 260% increases, respectively, resulting in a significant enhancement in power density, a 20% boost to 200 mW/cm<sup>2</sup>.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01547","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The control of nanostructure and phase morphology within electrolytes is crucial in determining the performance of electrochemical devices, such as high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Random copolymers have been extensively utilized in this field due to their straightforward synthetic methods compared to block copolymers. However, achieving precise control over the nanostructure of these random copolymers is challenging, owing to the irregular distribution of hydrophilic and hydrophobic segments along their backbone. Herein, we introduce the acid doping-induced phase separation of random copolymers containing basic moieties driven by base–acid interaction with phosphoric acid (PA). Small-angle X-ray scattering analysis revealed that increased functionalization led to phase separation and inversion, indicative of dispersed PA distribution, impacting membrane morphology and phase dynamics. The phase morphology control improves proton conductivity and PA retention up to 130% and 260% increases, respectively, resulting in a significant enhancement in power density, a 20% boost to 200 mW/cm2.

Abstract Image

酸掺杂诱导相分离,塑造相形态并提高聚合物电解质膜的性能
电解质中纳米结构和相形态的控制对于决定高温聚合物电解质膜燃料电池(HT-PEMFCs)等电化学设备的性能至关重要。与嵌段共聚物相比,无规共聚物的合成方法简单,因此在这一领域得到了广泛应用。然而,由于亲水段和疏水段在骨架上的分布不规则,要精确控制这些无规共聚物的纳米结构具有挑战性。在此,我们介绍了由磷酸(PA)的碱-酸相互作用驱动的酸掺杂诱导的含有碱性分子的无规共聚物的相分离。小角 X 射线散射分析表明,功能化程度的提高导致了相分离和反转,表明 PA 分布分散,影响了膜形态和相动力学。相形态控制改善了质子传导性,使 PA 的保留率分别提高了 130% 和 260%,从而显著提高了功率密度,将功率密度提高了 20%,达到 200 mW/cm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信