Reza Reihanisaransari, Chalapathi Charan Gajjela, Xinyu Wu, Ragib Ishrak, Yanping Zhong, David Mayerich, Sebastian Berisha and Rohith Reddy*,
{"title":"Cervical Cancer Tissue Analysis Using Photothermal Midinfrared Spectroscopic Imaging","authors":"Reza Reihanisaransari, Chalapathi Charan Gajjela, Xinyu Wu, Ragib Ishrak, Yanping Zhong, David Mayerich, Sebastian Berisha and Rohith Reddy*, ","doi":"10.1021/cbmi.4c0003110.1021/cbmi.4c00031","DOIUrl":null,"url":null,"abstract":"<p >Hyperspectral photothermal mid-infrared spectroscopic imaging (HP-MIRSI) is an emerging technology with promising applications in cervical cancer diagnosis and quantitative, label-free histopathology. This study pioneers the application of HP-MIRSI to the evaluation of clinical cervical cancer tissues, achieving excellent tissue type segmentation accuracy of over 95%. This achievement stems from an integrated approach of optimized data acquisition, computational data reconstruction, and the application of machine learning algorithms. The results are statistically robust, drawing from tissue samples of 98 cervical cancer patients and incorporating over 40 million data points. Traditional cervical cancer diagnosis methods entail biopsy, staining, and visual evaluation by a pathologist. This process is qualitative, subject to variations in staining and subjective interpretations, and requires extensive tissue processing, making it costly and time-consuming. In contrast, our proposed alternative can produce images comparable to those from histological analyses without the need for staining or complex sample preparation. This label-free, quantitative method utilizes biochemical data from HP-MIRSI and employs machine-learning algorithms for the rapid and precise segmentation of cervical tissue subtypes. This approach can potentially transform histopathological analysis by offering a more accurate and label-free alternative to conventional diagnostic processes.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 9","pages":"651–658 651–658"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperspectral photothermal mid-infrared spectroscopic imaging (HP-MIRSI) is an emerging technology with promising applications in cervical cancer diagnosis and quantitative, label-free histopathology. This study pioneers the application of HP-MIRSI to the evaluation of clinical cervical cancer tissues, achieving excellent tissue type segmentation accuracy of over 95%. This achievement stems from an integrated approach of optimized data acquisition, computational data reconstruction, and the application of machine learning algorithms. The results are statistically robust, drawing from tissue samples of 98 cervical cancer patients and incorporating over 40 million data points. Traditional cervical cancer diagnosis methods entail biopsy, staining, and visual evaluation by a pathologist. This process is qualitative, subject to variations in staining and subjective interpretations, and requires extensive tissue processing, making it costly and time-consuming. In contrast, our proposed alternative can produce images comparable to those from histological analyses without the need for staining or complex sample preparation. This label-free, quantitative method utilizes biochemical data from HP-MIRSI and employs machine-learning algorithms for the rapid and precise segmentation of cervical tissue subtypes. This approach can potentially transform histopathological analysis by offering a more accurate and label-free alternative to conventional diagnostic processes.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging