{"title":"High Selectivity in CO2 Reduction to CO Using Metal-Decorated C3N4 Nanotubes","authors":"Chi-You Liu*, and , Elise Yu-Tzu Li*, ","doi":"10.1021/acsaem.4c0192210.1021/acsaem.4c01922","DOIUrl":null,"url":null,"abstract":"<p >An important aspect of the CO<sub>2</sub> reduction reaction (CO2RR) is to inhibit the H<sub>2</sub> evolution reaction (HER) at the electrodes and to increase the formation of other valuable carbon products. In principle, a higher CO product selectivity allows for a higher amount of C<sub>2+</sub> products in the CO2RR. Here, we report a material, the metal-decorated C<sub>3</sub>N<sub>4</sub> nanotubes (M<sub><i>n</i></sub>/CNNTs, <i>n</i> = 1 and 4), which exhibits high CO selectivity and low HER probabilities. Our DFT calculations indicate that this catalyst system strongly activates the CO<sub>2</sub> molecule through a unique adsorption site on the surface, which then undergoes the COOH intermediate transformation to CO. The results show that the single Fe or Cu atom combined with the armchair-type CNNTs shows the best CO selectivity with low CO2RR overpotentials (<0.4 V), signifying an opportunity for efficient and economical CO<sub>2</sub> conversion for future applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01922","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An important aspect of the CO2 reduction reaction (CO2RR) is to inhibit the H2 evolution reaction (HER) at the electrodes and to increase the formation of other valuable carbon products. In principle, a higher CO product selectivity allows for a higher amount of C2+ products in the CO2RR. Here, we report a material, the metal-decorated C3N4 nanotubes (Mn/CNNTs, n = 1 and 4), which exhibits high CO selectivity and low HER probabilities. Our DFT calculations indicate that this catalyst system strongly activates the CO2 molecule through a unique adsorption site on the surface, which then undergoes the COOH intermediate transformation to CO. The results show that the single Fe or Cu atom combined with the armchair-type CNNTs shows the best CO selectivity with low CO2RR overpotentials (<0.4 V), signifying an opportunity for efficient and economical CO2 conversion for future applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.