Hydride Shuttle Catalysis: From Conventional to Inverse Mode

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Iakovos Saridakis, Immo Klose, Benjamin T. Jones and Nuno Maulide*, 
{"title":"Hydride Shuttle Catalysis: From Conventional to Inverse Mode","authors":"Iakovos Saridakis,&nbsp;Immo Klose,&nbsp;Benjamin T. Jones and Nuno Maulide*,&nbsp;","doi":"10.1021/jacsau.4c0053210.1021/jacsau.4c00532","DOIUrl":null,"url":null,"abstract":"<p >Hydride shuttle catalysis has emerged as a powerful synthetic platform, enabling the selective formation of C–C bonds to yield sp<sup>3</sup>-rich structures. By virtue of the compelling reactivity of sterically encumbered Lewis acids from the frustrated Lewis pair regime, hydride shuttle catalysis enables the regioselective functionalization of alkyl amines at either the α- or β-position. In contrast to classical Lewis acid reactivity, the increased steric hindrance prevents interaction with the Lewis basic amine itself, instead leading to reversible abstraction of a hydride from the amine α-carbon. The created positive charge facilitates the occurrence of transformations before hydride rebound or a similar capture event happen. In this Perspective, we outline a broad selection of transformations featuring hydride shuttle catalysis, as well as the recently developed approach of <i>inverse</i> hydride shuttle catalysis. Both strategies give rise to a wide array of functionalized amines and offer elegant approaches to otherwise elusive bond formations.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 9","pages":"3358–3369 3358–3369"},"PeriodicalIF":8.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00532","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydride shuttle catalysis has emerged as a powerful synthetic platform, enabling the selective formation of C–C bonds to yield sp3-rich structures. By virtue of the compelling reactivity of sterically encumbered Lewis acids from the frustrated Lewis pair regime, hydride shuttle catalysis enables the regioselective functionalization of alkyl amines at either the α- or β-position. In contrast to classical Lewis acid reactivity, the increased steric hindrance prevents interaction with the Lewis basic amine itself, instead leading to reversible abstraction of a hydride from the amine α-carbon. The created positive charge facilitates the occurrence of transformations before hydride rebound or a similar capture event happen. In this Perspective, we outline a broad selection of transformations featuring hydride shuttle catalysis, as well as the recently developed approach of inverse hydride shuttle catalysis. Both strategies give rise to a wide array of functionalized amines and offer elegant approaches to otherwise elusive bond formations.

Abstract Image

氢化物穿梭催化:从传统模式到反向模式
氢化物穿梭催化已成为一种功能强大的合成平台,可选择性地形成 C-C 键,从而产生富含 sp3 的结构。氢化物穿梭催化利用受立体阻碍的路易斯酸在受挫路易斯对体系中的强反应性,实现了烷基胺在α位或β位的区域选择性官能化。与经典的路易斯酸反应性不同的是,增加的立体阻碍阻止了与路易斯碱性胺本身的相互作用,反而导致从胺的α-碳上可逆地抽取氢化物。产生的正电荷有利于在氢化物反弹或类似俘获事件发生之前实现转化。在本《视角》中,我们概述了以氢化物穿梭催化为特征的多种转化选择,以及最近开发的反氢化物穿梭催化方法。这两种策略都能产生多种功能化胺,并为难以捉摸的键的形成提供了优雅的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信