{"title":"Peptide PET Imaging: A Review of Recent Developments and a Look at the Future of Radiometal-Labeled Peptides in Medicine","authors":"Majed Shabsigh, and , Lee A. Solomon*, ","doi":"10.1021/cbmi.4c0003010.1021/cbmi.4c00030","DOIUrl":null,"url":null,"abstract":"<p >The development of peptide-based, radiometal-labeled PET imaging agents has seen an increase in attention due to the favorable properties the peptide backbone exhibits. These include high selectivity and affinity to proteins and cells directly linked to various types of cancers. In addition, rapid clearance from circulation and low toxicity allow for unique approaches to engineering a viable peptide-based imaging agent. Utilizing peptides as the backbone allows for various modifications to improve metabolic stability, target cell affinity, and image quality and imaging capabilities and reduce toxicity. Select radiolabeled peptides have already been FDA approved, with many more in late-stage trials. This review summarizes the current state of the radiometal-labeled PET peptide imaging field as well as explores methods used by researchers to modify peptides, concluding with a look at the future of peptide-based therapy and diagnostics.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 9","pages":"615–630 615–630"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The development of peptide-based, radiometal-labeled PET imaging agents has seen an increase in attention due to the favorable properties the peptide backbone exhibits. These include high selectivity and affinity to proteins and cells directly linked to various types of cancers. In addition, rapid clearance from circulation and low toxicity allow for unique approaches to engineering a viable peptide-based imaging agent. Utilizing peptides as the backbone allows for various modifications to improve metabolic stability, target cell affinity, and image quality and imaging capabilities and reduce toxicity. Select radiolabeled peptides have already been FDA approved, with many more in late-stage trials. This review summarizes the current state of the radiometal-labeled PET peptide imaging field as well as explores methods used by researchers to modify peptides, concluding with a look at the future of peptide-based therapy and diagnostics.
由于多肽骨架所具有的良好特性,以多肽为基础的放射性金属标记 PET 成像剂的开发越来越受到关注。这些特性包括对与各类癌症直接相关的蛋白质和细胞具有高选择性和亲和性。此外,肽在血液循环中的快速清除和低毒性使我们可以采用独特的方法来设计一种可行的肽基成像剂。利用肽作为骨架可以进行各种修饰,以提高代谢稳定性、靶细胞亲和力、成像质量和成像能力,并降低毒性。部分放射性标记肽已获得 FDA 批准,还有更多肽处于后期试验阶段。本综述总结了放射性同位素标记 PET 肽成像领域的现状,并探讨了研究人员用来修饰肽的方法,最后展望了基于肽的治疗和诊断的未来。
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging