Unveiling Magnetic Transition-Driven Thermal Conductivity Switching in Semiconducting Monolayer VS2

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2024-09-20 DOI:10.1039/d4nr02375g
Zimmi Singh, Abhishek Kumar, Sankha Mukherjee
{"title":"Unveiling Magnetic Transition-Driven Thermal Conductivity Switching in Semiconducting Monolayer VS2","authors":"Zimmi Singh, Abhishek Kumar, Sankha Mukherjee","doi":"10.1039/d4nr02375g","DOIUrl":null,"url":null,"abstract":"Effective thermal management is essential for maintaining the operational stability and data security of magnetic devices across diverse fields, including thermoelectric, sensing, data storage, and spintronics. In this study, density functional theory calculations were conducted to explore the spin-induced modifications in the thermal properties of the H-phase monolayer VS₂, a two-dimensional (2D) semiconducting ferromagnet. Our investigation revealed that the 2D H-phase of VS2 exhibits a substantial thermal switching ratio, exceeding four at the Curie temperature, due to the coupling between magnetic order and lattice vibrations. This sensitivity arises from spin-dependent lattice anharmonicity, which results in a stiffening of the V-S bonds, thereby modifying the frequencies of different vibrational modes. Phonon-phonon interactions calculations indicated that phonon-magnon scattering was more predominant in the paramagnetic (PM) phase than in the ferromagnetic (FM) phase, which resulted in a reduced phonon lifetime, mean free path and group velocity. As a result, the lattice thermal conductivity was calculated to drop from 15.18 W/m/K in the ferromagnetic phase to 3.59 W/m/K in the paramagnetic phase. By elucidating heat transport in two-dimensional ferromagnets, our study offers valuable insights for manipulating and converting thermal energy.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr02375g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Effective thermal management is essential for maintaining the operational stability and data security of magnetic devices across diverse fields, including thermoelectric, sensing, data storage, and spintronics. In this study, density functional theory calculations were conducted to explore the spin-induced modifications in the thermal properties of the H-phase monolayer VS₂, a two-dimensional (2D) semiconducting ferromagnet. Our investigation revealed that the 2D H-phase of VS2 exhibits a substantial thermal switching ratio, exceeding four at the Curie temperature, due to the coupling between magnetic order and lattice vibrations. This sensitivity arises from spin-dependent lattice anharmonicity, which results in a stiffening of the V-S bonds, thereby modifying the frequencies of different vibrational modes. Phonon-phonon interactions calculations indicated that phonon-magnon scattering was more predominant in the paramagnetic (PM) phase than in the ferromagnetic (FM) phase, which resulted in a reduced phonon lifetime, mean free path and group velocity. As a result, the lattice thermal conductivity was calculated to drop from 15.18 W/m/K in the ferromagnetic phase to 3.59 W/m/K in the paramagnetic phase. By elucidating heat transport in two-dimensional ferromagnets, our study offers valuable insights for manipulating and converting thermal energy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信