Low-Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption

IF 26.6 1区 材料科学 Q1 Engineering
Zizhuang He, Lingzi Shi, Ran Sun, Lianfei Ding, Mukun He, Jiaming Li, Hua Guo, Tiande Gao, Panbo Liu
{"title":"Low-Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption","authors":"Zizhuang He,&nbsp;Lingzi Shi,&nbsp;Ran Sun,&nbsp;Lianfei Ding,&nbsp;Mukun He,&nbsp;Jiaming Li,&nbsp;Hua Guo,&nbsp;Tiande Gao,&nbsp;Panbo Liu","doi":"10.1007/s40820-024-01516-z","DOIUrl":null,"url":null,"abstract":"<div><p>Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching, adjusting dielectric/magnetic resonance and promoting electromagnetic (EM) wave absorption, but still exist a significant challenging in regulating local phase evolution. Herein, accordion-shaped Co/Co<sub>3</sub>O<sub>4</sub>@N-doped carbon nanosheets (Co/Co<sub>3</sub>O<sub>4</sub>@NC) with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and low-temperature oxidation process. The results indicate that the surface epitaxial growth of crystal Co<sub>3</sub>O<sub>4</sub> domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components, which are beneficial for optimizing impedance matching and interfacial polarization. Moreover, gradient magnetic heterointerfaces simultaneously realize magnetic coupling, and long-range magnetic diffraction. Specifically, the synthesized Co/Co<sub>3</sub>O<sub>4</sub>@NC absorbents display the strong electromagnetic wave attenuation capability of − 53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz, both are superior to those of single magnetic domains embedded in carbon matrix. This design concept provides us an inspiration in optimizing interfacial polarization, regulating magnetic coupling and promoting electromagnetic wave absorption.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01516-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01516-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching, adjusting dielectric/magnetic resonance and promoting electromagnetic (EM) wave absorption, but still exist a significant challenging in regulating local phase evolution. Herein, accordion-shaped Co/Co3O4@N-doped carbon nanosheets (Co/Co3O4@NC) with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and low-temperature oxidation process. The results indicate that the surface epitaxial growth of crystal Co3O4 domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components, which are beneficial for optimizing impedance matching and interfacial polarization. Moreover, gradient magnetic heterointerfaces simultaneously realize magnetic coupling, and long-range magnetic diffraction. Specifically, the synthesized Co/Co3O4@NC absorbents display the strong electromagnetic wave attenuation capability of − 53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz, both are superior to those of single magnetic domains embedded in carbon matrix. This design concept provides us an inspiration in optimizing interfacial polarization, regulating magnetic coupling and promoting electromagnetic wave absorption.

Abstract Image

具有梯度磁性异质界面的低温氧化诱导相变,可实现卓越的电磁波吸收性能
梯度磁性异质界面在优化阻抗匹配、调节介电/磁共振和促进电磁波吸收方面注入了无限活力,但在调节局部相演化方面仍存在巨大挑战。本文通过合作高温碳化和低温氧化工艺,制备了具有梯度磁性异质界面的风琴状 Co/Co3O4@N 掺杂碳纳米片(Co/Co3O4@NC)。结果表明,晶体 Co3O4 域在局部 Co 纳米粒子上的表面外延生长实现了磁性异原子成分的调整,有利于优化阻抗匹配和界面极化。此外,梯度磁性异质界面还同时实现了磁耦合和长程磁衍射。具体来说,合成的 Co/Co3O4@NC 吸波材料在厚度为 3.0 mm 时的电磁波衰减能力高达 - 53.5 dB,有效吸波带宽为 5.36 GHz,均优于嵌入碳基体的单磁畴。这一设计理念为我们优化界面极化、调节磁耦合和促进电磁波吸收提供了灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信