Yuqi Li, Xueli Zheng, Evan Z. Carlson, Xin Xiao, Xiwen Chi, Yi Cui, Louisa C. Greenburg, Ge Zhang, Elizabeth Zhang, Chenwei Liu, Yufei Yang, Mun Sek Kim, Guangxia Feng, Pu Zhang, Hance Su, Xun Guan, Jiawei Zhou, Yecun Wu, Zhichen Xue, Weiyu Li, Michal Bajdich, Yi Cui
{"title":"In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries","authors":"Yuqi Li, Xueli Zheng, Evan Z. Carlson, Xin Xiao, Xiwen Chi, Yi Cui, Louisa C. Greenburg, Ge Zhang, Elizabeth Zhang, Chenwei Liu, Yufei Yang, Mun Sek Kim, Guangxia Feng, Pu Zhang, Hance Su, Xun Guan, Jiawei Zhou, Yecun Wu, Zhichen Xue, Weiyu Li, Michal Bajdich, Yi Cui","doi":"10.1038/s41560-024-01638-z","DOIUrl":null,"url":null,"abstract":"<p>Zn/MnO<sub>2</sub> batteries, driven by a dual deposition reaction, are a prominent avenue for achieving high energy density in aqueous systems. Introducing an initially dual-electrode-free (anode/cathode) configuration can further boost energy density to over 200 Wh kg<sup>−1</sup>, but with limited cycle life due to the poor reversibility of Zn/MnO<sub>2</sub> deposition and stripping. Drawing inspiration from soft templating strategies in material synthesis, here we apply this approach to electrodeposition and stripping by designing an in situ formed liquid crystal interphase. This concept is achieved by incorporating just 0.1 mM of surfactant molecules into the electrolyte, which induces favourable <i>c</i>-axis orientations in depositing both hexagonal Zn and MnO<sub>2</sub>. This enhancement subsequently increases the deposition/stripping reversibility and promotes the cycle life of the dual-electrode-free battery, achieving 80% capacity retention after ~950 cycles. This liquid crystal interphase chemistry also holds great promise for regulating deposition in other crystal systems, opening an exciting research direction for next-generation high-energy-density and long-duration energy storage based on aqueous chemistries.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"25 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01638-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Zn/MnO2 batteries, driven by a dual deposition reaction, are a prominent avenue for achieving high energy density in aqueous systems. Introducing an initially dual-electrode-free (anode/cathode) configuration can further boost energy density to over 200 Wh kg−1, but with limited cycle life due to the poor reversibility of Zn/MnO2 deposition and stripping. Drawing inspiration from soft templating strategies in material synthesis, here we apply this approach to electrodeposition and stripping by designing an in situ formed liquid crystal interphase. This concept is achieved by incorporating just 0.1 mM of surfactant molecules into the electrolyte, which induces favourable c-axis orientations in depositing both hexagonal Zn and MnO2. This enhancement subsequently increases the deposition/stripping reversibility and promotes the cycle life of the dual-electrode-free battery, achieving 80% capacity retention after ~950 cycles. This liquid crystal interphase chemistry also holds great promise for regulating deposition in other crystal systems, opening an exciting research direction for next-generation high-energy-density and long-duration energy storage based on aqueous chemistries.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.