Unitary Root-MUSIC Method With Nystrom Approximation for 3-D Sparse Array DOA Estimation in Sensor Networks

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Veerendra D;Miguel Villagomez-Galindo;Ana Beatriz Martínez Valencia;Niranjan KR;Arora Jasmineet Kaur;Upendra Kumar Potnuru;Jasgurpreet Singh Chohan;Bade Venkata Suresh;Sudhanshu Maurya
{"title":"Unitary Root-MUSIC Method With Nystrom Approximation for 3-D Sparse Array DOA Estimation in Sensor Networks","authors":"Veerendra D;Miguel Villagomez-Galindo;Ana Beatriz Martínez Valencia;Niranjan KR;Arora Jasmineet Kaur;Upendra Kumar Potnuru;Jasgurpreet Singh Chohan;Bade Venkata Suresh;Sudhanshu Maurya","doi":"10.1109/LSENS.2024.3451723","DOIUrl":null,"url":null,"abstract":"This letter addresses the challenge of efficient direction of arrival (DOA) estimation in 3-D sparse arrays, crucial for applications, such as radar and wireless communication systems. We introduce a novel methodology that combines the Nystrom approximation with the unitary root-multiple signal classification (MUSIC) algorithm to precisely estimate DOAs while significantly reducing computational complexity. Our approach strategically selects a subset of sensors using the Nystrom approximation, resulting in a notable decrease in simulation time compared to conventional methods, such as Root-MUSIC and MR-ESPRIT. Extensive simulations validate the efficacy of our method, demonstrating a reduction of up to 39% in simulation time with a sensor subset size of 20. This technique, which enhances efficiency, has the potential to transform DOA estimation in 3-D sparse arrays, making it suitable for real-world applications that demand rapid and accurate signal processing.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10659128/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter addresses the challenge of efficient direction of arrival (DOA) estimation in 3-D sparse arrays, crucial for applications, such as radar and wireless communication systems. We introduce a novel methodology that combines the Nystrom approximation with the unitary root-multiple signal classification (MUSIC) algorithm to precisely estimate DOAs while significantly reducing computational complexity. Our approach strategically selects a subset of sensors using the Nystrom approximation, resulting in a notable decrease in simulation time compared to conventional methods, such as Root-MUSIC and MR-ESPRIT. Extensive simulations validate the efficacy of our method, demonstrating a reduction of up to 39% in simulation time with a sensor subset size of 20. This technique, which enhances efficiency, has the potential to transform DOA estimation in 3-D sparse arrays, making it suitable for real-world applications that demand rapid and accurate signal processing.
用于传感器网络中三维稀疏阵列 DOA 估计的带有 Nystrom 近似值的单元根-MUSIC 方法
这封信探讨了在三维稀疏阵列中高效估计到达方向(DOA)的难题,这对雷达和无线通信系统等应用至关重要。我们介绍了一种新颖的方法,该方法结合了 Nystrom 近似和单元根多重信号分类 (MUSIC) 算法,可精确估计 DOA,同时显著降低计算复杂度。与 Root-MUSIC 和 MR-ESPRIT 等传统方法相比,我们的方法使用 Nystrom 近似值战略性地选择传感器子集,从而显著减少了模拟时间。大量的模拟验证了我们方法的有效性,在传感器子集规模为 20 个的情况下,模拟时间最多可减少 39%。这项技术提高了效率,有望改变三维稀疏阵列中的 DOA 估计,使其适用于要求快速、准确信号处理的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信