Functional Diagnosability of Possibly Uncertain Systems

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Carine Jauberthie;Nathalie Verdière;Louise Travé-Massuyès
{"title":"Functional Diagnosability of Possibly Uncertain Systems","authors":"Carine Jauberthie;Nathalie Verdière;Louise Travé-Massuyès","doi":"10.1109/LCSYS.2024.3456230","DOIUrl":null,"url":null,"abstract":"Diagnosability is a crucial attribute of systems and their instrumentation, ensuring that specified faults can be uniquely identified using the available sensors. In a model-based context, diagnosability is evaluated through analytical redundancy relations derived from the model by eliminating unknown variables. These relations, evaluated from sensor data, yield residuals, which indicate the system’s normal or faulty state. Ideally, residuals exhibit distinct values for different faults, generating unique fault signatures that facilitate fault discrimination and affirm system diagnosability. This letter presents a sufficient condition for the functional diagnosability of nonlinear dynamical systems, based on the functional linear independence of fault signatures. Unlike conventional diagnosability analysis, which focuses on residuals evaluated in a binary manner, 0 when not sensitive to a fault and 1 otherwise, functional diagnosability emphasizes the system’s behavior by evaluating the functional expressions of residuals defined as functional fault signatures. Evaluated from sensor data, functional signatures allow for an analysis of the whole residual trajectories. This advantageously increases the discriminating power. This approach leverages the symbolic framework of differential algebra, accommodating both deterministic and bounded uncertain systems without the need for a set-membership framework.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2181-2186"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669604/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Diagnosability is a crucial attribute of systems and their instrumentation, ensuring that specified faults can be uniquely identified using the available sensors. In a model-based context, diagnosability is evaluated through analytical redundancy relations derived from the model by eliminating unknown variables. These relations, evaluated from sensor data, yield residuals, which indicate the system’s normal or faulty state. Ideally, residuals exhibit distinct values for different faults, generating unique fault signatures that facilitate fault discrimination and affirm system diagnosability. This letter presents a sufficient condition for the functional diagnosability of nonlinear dynamical systems, based on the functional linear independence of fault signatures. Unlike conventional diagnosability analysis, which focuses on residuals evaluated in a binary manner, 0 when not sensitive to a fault and 1 otherwise, functional diagnosability emphasizes the system’s behavior by evaluating the functional expressions of residuals defined as functional fault signatures. Evaluated from sensor data, functional signatures allow for an analysis of the whole residual trajectories. This advantageously increases the discriminating power. This approach leverages the symbolic framework of differential algebra, accommodating both deterministic and bounded uncertain systems without the need for a set-membership framework.
可能不确定系统的功能可诊断性
可诊断性是系统及其仪器的一个重要属性,可确保利用现有传感器唯一识别指定故障。在基于模型的情况下,可诊断性是通过消除未知变量从模型中得出的分析冗余关系来评估的。根据传感器数据对这些关系进行评估,得出残差,残差表示系统的正常或故障状态。理想情况下,残差在不同故障时会表现出不同的值,从而产生独特的故障特征,便于分辨故障并确认系统的可诊断性。本文基于故障特征的功能线性独立性,提出了非线性动力学系统功能可诊断性的充分条件。传统的可诊断性分析侧重于以二进制方式评估残差(对故障不敏感时为 0,否则为 1),而功能可诊断性则不同,它通过评估定义为功能故障特征的残差的功能表达来强调系统的行为。功能特征通过传感器数据进行评估,可对整个残差轨迹进行分析。这就大大提高了判别能力。这种方法利用了微分代数的符号框架,可同时适用于确定性系统和有界不确定系统,而无需集合成员框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信