Mariska Brüls-Gill , Sanam Foroutanparsa , Théo Merland , C. Elizabeth P. Maljaars , Maurien Olsthoorn , Roderick P. Tas , Ilja K. Voets
{"title":"Microstructural analysis of network formation in milk protein-polysaccharide mixtures by timelapse confocal laser scanning microscopy","authors":"Mariska Brüls-Gill , Sanam Foroutanparsa , Théo Merland , C. Elizabeth P. Maljaars , Maurien Olsthoorn , Roderick P. Tas , Ilja K. Voets","doi":"10.1016/j.foostr.2024.100390","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the firmness and viscosity of yogurt, a widely consumed dairy product, polysaccharides are frequently utilized. Polysaccharides can modify the formation of the protein networks that make up yogurt by interacting with the milk proteins via electrostatic forces and depletion mechanisms. The interactions between milk proteins and polysaccharides during yogurt fermentation are difficult to study, because they evolve over time due to the decrease in pH. To overcome this, we examine the impact of five different types of polysaccharides (low acyl gellan, high acyl gellan, xanthan, guar gum, ι-Carrageenan) during acid-induced milk gelation using Confocal Laser-Scanning Microscopy. Additionally, we employ Fourier space analysis, time-dependent oscillatory rheology, and cross-correlation image analysis to quantitatively understand how the different polysaccharides affect yogurt microstructure and properties. Our results show that addition of xanthan, guar gum, and ι-carrageenan results in faster structure formation, at pH values above the onset of gelation. Furthermore, while having identical charge density, low acyl gellan associates faster with the protein network compared to more acetylated high acyl gellan or highly branched xanthan. In summary, this study highlights the benefits of integrating timelapse imaging with quantitative image analysis to gain insights into the influence of polysaccharides during milk gelation.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"42 ","pages":"Article 100390"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213329124000261/pdfft?md5=a46028b1467b01aedd75659fb2b776bc&pid=1-s2.0-S2213329124000261-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329124000261","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the firmness and viscosity of yogurt, a widely consumed dairy product, polysaccharides are frequently utilized. Polysaccharides can modify the formation of the protein networks that make up yogurt by interacting with the milk proteins via electrostatic forces and depletion mechanisms. The interactions between milk proteins and polysaccharides during yogurt fermentation are difficult to study, because they evolve over time due to the decrease in pH. To overcome this, we examine the impact of five different types of polysaccharides (low acyl gellan, high acyl gellan, xanthan, guar gum, ι-Carrageenan) during acid-induced milk gelation using Confocal Laser-Scanning Microscopy. Additionally, we employ Fourier space analysis, time-dependent oscillatory rheology, and cross-correlation image analysis to quantitatively understand how the different polysaccharides affect yogurt microstructure and properties. Our results show that addition of xanthan, guar gum, and ι-carrageenan results in faster structure formation, at pH values above the onset of gelation. Furthermore, while having identical charge density, low acyl gellan associates faster with the protein network compared to more acetylated high acyl gellan or highly branched xanthan. In summary, this study highlights the benefits of integrating timelapse imaging with quantitative image analysis to gain insights into the influence of polysaccharides during milk gelation.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.