Augustine K. Osei , Naresh V. Thevathasan , Maren Oelbermann
{"title":"Soil carbon dynamics in perennial biomass crops on marginally productive cropland in southern Canada","authors":"Augustine K. Osei , Naresh V. Thevathasan , Maren Oelbermann","doi":"10.1016/j.geodrs.2024.e00866","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting changes in soil organic carbon (SOC) in perennial biomass crops using process-based models provides a greater understanding of land management impacts on climate mitigation through long-term soil carbon sequestration. The objective of this study was to predict long-term SOC dynamics in different perennial biomass crops [miscanthus (<em>Miscanthus giganteus</em> L.), switchgrass (<em>Panicum virgatum</em> L.), willow (<em>Salix miyabeana</em> L.)] as compared to secondary regrowth vegetation (successional site) and a row crop system. The Century model accurately predicted SOC when simulated values were compared to measured field data. Average SOC stocks over the 162-year simulation period to 20 cm, were highest in miscanthus (8521 g C m<sup>−2</sup>), followed by the successional site (6877 g C m<sup>−2</sup>), switchgrass (6480 g C m<sup>−2</sup>), willow (5448 g C m<sup>−2</sup>) and lowest in the row crop system (3995 g C m<sup>−2</sup>). Higher SOC stocks in the miscanthus than the successional site indicates that, despite frequent biomass harvest, perennial biomass crops can accumulate higher carbon in soil than when a marginally productive cropland is left to undergo secondary regrowth. However, this depends on the crop species, since the miscanthus was the only biomass crop that reached pre-cultivation (1911) SOC stock of 8288 g C m<sup>−2</sup>. Moreover, the perennial biomass crops enhanced SOC in the slow fraction, whereas row crops depleted SOC in this fraction. This indicates the vital contribution of perennial biomass crops in long-term SOC sequestration and their role in climate change mitigation, especially when grown on marginally productive croplands.</p></div>","PeriodicalId":56001,"journal":{"name":"Geoderma Regional","volume":"39 ","pages":"Article e00866"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352009424001135/pdfft?md5=b73da0b492405eb8c3c75ae349dd2699&pid=1-s2.0-S2352009424001135-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma Regional","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352009424001135","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting changes in soil organic carbon (SOC) in perennial biomass crops using process-based models provides a greater understanding of land management impacts on climate mitigation through long-term soil carbon sequestration. The objective of this study was to predict long-term SOC dynamics in different perennial biomass crops [miscanthus (Miscanthus giganteus L.), switchgrass (Panicum virgatum L.), willow (Salix miyabeana L.)] as compared to secondary regrowth vegetation (successional site) and a row crop system. The Century model accurately predicted SOC when simulated values were compared to measured field data. Average SOC stocks over the 162-year simulation period to 20 cm, were highest in miscanthus (8521 g C m−2), followed by the successional site (6877 g C m−2), switchgrass (6480 g C m−2), willow (5448 g C m−2) and lowest in the row crop system (3995 g C m−2). Higher SOC stocks in the miscanthus than the successional site indicates that, despite frequent biomass harvest, perennial biomass crops can accumulate higher carbon in soil than when a marginally productive cropland is left to undergo secondary regrowth. However, this depends on the crop species, since the miscanthus was the only biomass crop that reached pre-cultivation (1911) SOC stock of 8288 g C m−2. Moreover, the perennial biomass crops enhanced SOC in the slow fraction, whereas row crops depleted SOC in this fraction. This indicates the vital contribution of perennial biomass crops in long-term SOC sequestration and their role in climate change mitigation, especially when grown on marginally productive croplands.
期刊介绍:
Global issues require studies and solutions on national and regional levels. Geoderma Regional focuses on studies that increase understanding and advance our scientific knowledge of soils in all regions of the world. The journal embraces every aspect of soil science and welcomes reviews of regional progress.