Equivalence of block sequences in Schreier spaces and their duals

IF 1.7 2区 数学 Q1 MATHEMATICS
R.M. Causey, A. Pelczar-Barwacz
{"title":"Equivalence of block sequences in Schreier spaces and their duals","authors":"R.M. Causey,&nbsp;A. Pelczar-Barwacz","doi":"10.1016/j.jfa.2024.110674","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that any normalized block sequence in a Schreier space <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>ξ</mi></mrow></msub></math></span>, of arbitrary order <span><math><mi>ξ</mi><mo>&lt;</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, admits a subsequence equivalent to a subsequence of the canonical basis of some Schreier space. The analogous result is proved for dual spaces to Schreier spaces. Using these results, we examine the structure of strictly singular operators on Schreier spaces and show that there are <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>c</mi></mrow></msup></math></span> many closed operator ideals on a Schreier space of any order, its dual and bidual space.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110674"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003628","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that any normalized block sequence in a Schreier space Xξ, of arbitrary order ξ<ω1, admits a subsequence equivalent to a subsequence of the canonical basis of some Schreier space. The analogous result is proved for dual spaces to Schreier spaces. Using these results, we examine the structure of strictly singular operators on Schreier spaces and show that there are 2c many closed operator ideals on a Schreier space of any order, its dual and bidual space.

施赖尔空间及其对偶中块序列的等价性
我们证明,任意阶ξ<ω1 的施赖尔空间 Xξ 中的任何归一化块序列,都有一个子序列等同于某个施赖尔空间的规范基的子序列。对于施赖尔空间的对偶空间,也证明了类似的结果。利用这些结果,我们考察了施赖尔空间上严格奇异算子的结构,并证明在任意阶的施赖尔空间、其对偶空间和双元空间上有 2c 个封闭算子理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信