{"title":"A probabilistic approach to Lorentz balls ℓq,1n","authors":"Zakhar Kabluchko , Joscha Prochno , Mathias Sonnleitner","doi":"10.1016/j.jfa.2024.110682","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a probabilistic approach to study the volumetric and geometric properties of unit balls <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>q</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> of finite-dimensional Lorentz sequence spaces <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>q</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>. More precisely, we show that the empirical distribution of a random vector <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> uniformly distributed on its volume normalized unit ball converges weakly to a compactly supported symmetric probability distribution with explicitly given density; as a consequence we obtain a weak Poincaré-Maxwell-Borel principle for any fixed number <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span> of coordinates of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. Moreover, we prove a central limit theorem for the largest coordinate of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span>, demonstrating a quite different behavior than in the case of the <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> balls, where a Gumbel distribution appears in the limit. Finally, we prove a Schechtman-Schmuckenschläger type result for the asymptotic volume of intersections of volume normalized <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>q</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> balls.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003707/pdfft?md5=9e7a15addc6eca991b6cc2bfa89d8f84&pid=1-s2.0-S0022123624003707-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003707","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a probabilistic approach to study the volumetric and geometric properties of unit balls of finite-dimensional Lorentz sequence spaces . More precisely, we show that the empirical distribution of a random vector uniformly distributed on its volume normalized unit ball converges weakly to a compactly supported symmetric probability distribution with explicitly given density; as a consequence we obtain a weak Poincaré-Maxwell-Borel principle for any fixed number of coordinates of as . Moreover, we prove a central limit theorem for the largest coordinate of , demonstrating a quite different behavior than in the case of the balls, where a Gumbel distribution appears in the limit. Finally, we prove a Schechtman-Schmuckenschläger type result for the asymptotic volume of intersections of volume normalized and balls.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis