A probabilistic approach to Lorentz balls ℓq,1n

IF 1.7 2区 数学 Q1 MATHEMATICS
Zakhar Kabluchko , Joscha Prochno , Mathias Sonnleitner
{"title":"A probabilistic approach to Lorentz balls ℓq,1n","authors":"Zakhar Kabluchko ,&nbsp;Joscha Prochno ,&nbsp;Mathias Sonnleitner","doi":"10.1016/j.jfa.2024.110682","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a probabilistic approach to study the volumetric and geometric properties of unit balls <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>q</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> of finite-dimensional Lorentz sequence spaces <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>q</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>. More precisely, we show that the empirical distribution of a random vector <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> uniformly distributed on its volume normalized unit ball converges weakly to a compactly supported symmetric probability distribution with explicitly given density; as a consequence we obtain a weak Poincaré-Maxwell-Borel principle for any fixed number <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span> of coordinates of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. Moreover, we prove a central limit theorem for the largest coordinate of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span>, demonstrating a quite different behavior than in the case of the <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> balls, where a Gumbel distribution appears in the limit. Finally, we prove a Schechtman-Schmuckenschläger type result for the asymptotic volume of intersections of volume normalized <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>q</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> balls.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110682"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003707/pdfft?md5=9e7a15addc6eca991b6cc2bfa89d8f84&pid=1-s2.0-S0022123624003707-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003707","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a probabilistic approach to study the volumetric and geometric properties of unit balls Bq,1n of finite-dimensional Lorentz sequence spaces q,1n. More precisely, we show that the empirical distribution of a random vector X(n) uniformly distributed on its volume normalized unit ball converges weakly to a compactly supported symmetric probability distribution with explicitly given density; as a consequence we obtain a weak Poincaré-Maxwell-Borel principle for any fixed number kN of coordinates of X(n) as n. Moreover, we prove a central limit theorem for the largest coordinate of X(n), demonstrating a quite different behavior than in the case of the qn balls, where a Gumbel distribution appears in the limit. Finally, we prove a Schechtman-Schmuckenschläger type result for the asymptotic volume of intersections of volume normalized q,1n and pn balls.

洛伦兹球 ℓq,1n 的概率方法
我们开发了一种概率方法来研究有限维洛伦兹序列空间 ℓq,1n 的单位球 Bq,1n 的体积和几何特性。更确切地说,我们证明了均匀分布在其体积归一化单位球上的随机向量 X(n) 的经验分布弱收敛于具有明确给定密度的紧凑支撑对称概率分布;因此,我们得到了对于 X(n) 坐标的任意固定数 k∈N 的弱 Poincaré-Maxwell-Borel 原则,即 n→∞。此外,我们还证明了 X(n) 最大坐标的中心极限定理,证明了与ℓqn 球截然不同的行为,在ℓqn 球的极限中出现了冈贝尔分布。最后,我们证明了关于体积归一化 ℓq,1n 和 ℓpn 球交点的渐近体积的谢赫特曼-施穆克恩施拉格(Schechtman-Schmuckenschläger)式结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信