Steering interlayer interaction of lithium-aluminum layered double hydroxide beads for stable lithium extraction from sulfate-type brines

IF 8.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
{"title":"Steering interlayer interaction of lithium-aluminum layered double hydroxide beads for stable lithium extraction from sulfate-type brines","authors":"","doi":"10.1016/j.desal.2024.118130","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-aluminum layered double hydroxide (LiAl-LDH) is the most successful industrialized adsorbents for lithium extraction from salt lake brines with high Mg<sup>2+</sup>/Li<sup>+</sup> ratios. Nevertheless, its applications in SO<sub>4</sub><sup>2−</sup>-type brines hit an “Achilles heel”, i.e., the poor Li<sup>+</sup> extraction due to the desorption obstacle arising from spontaneous intercalation of SO<sub>4</sub><sup>2−</sup>. Herein, a novel strategy of steering interlayer interaction was developed by embedding portion of PO<sub>4</sub><sup>3−</sup> into interlayers of LiAl-LDH beads (BLDH-P). Owing to the lower binding energy (<em>E</em><sub>b</sub>) and stronger diffusion energy barrier of SO<sub>4</sub><sup>2−</sup> within interlayers, BLDH-P featured property of preventing SO<sub>4</sub><sup>2−</sup> intercalation, with the unchanged adsorption and desorption capacity in Lop Nor brine (the largest SO<sub>4</sub><sup>2−</sup>-type brine in the world) during the long-term recycling. BLDH-P also showed excellent Li<sup>+</sup> extraction performance, as the results of enlarged interlayer spacing and selective electrostatic repulsion. The static and dynamic Li<sup>+</sup> uptake reached 5.26 mg/g and 3.96 mg/g, with high separation factors of 39.84, 48.14, and 144.87 for Li<sup>+</sup>/K<sup>+</sup>, Li<sup>+</sup>/Na<sup>+</sup>, and Li<sup>+</sup>/Mg<sup>2+</sup>, respectively, superior to those of reported and commercialized LiAl-LDH. This work offers a feasible strategy of using interlayer modulation for long-term Li<sup>+</sup> extraction by LiAl-LDH from SO<sub>4</sub><sup>2−</sup>-type brines, and inspires the development and design of next-generation lithium adsorbents.</p></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424008415","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-aluminum layered double hydroxide (LiAl-LDH) is the most successful industrialized adsorbents for lithium extraction from salt lake brines with high Mg2+/Li+ ratios. Nevertheless, its applications in SO42−-type brines hit an “Achilles heel”, i.e., the poor Li+ extraction due to the desorption obstacle arising from spontaneous intercalation of SO42−. Herein, a novel strategy of steering interlayer interaction was developed by embedding portion of PO43− into interlayers of LiAl-LDH beads (BLDH-P). Owing to the lower binding energy (Eb) and stronger diffusion energy barrier of SO42− within interlayers, BLDH-P featured property of preventing SO42− intercalation, with the unchanged adsorption and desorption capacity in Lop Nor brine (the largest SO42−-type brine in the world) during the long-term recycling. BLDH-P also showed excellent Li+ extraction performance, as the results of enlarged interlayer spacing and selective electrostatic repulsion. The static and dynamic Li+ uptake reached 5.26 mg/g and 3.96 mg/g, with high separation factors of 39.84, 48.14, and 144.87 for Li+/K+, Li+/Na+, and Li+/Mg2+, respectively, superior to those of reported and commercialized LiAl-LDH. This work offers a feasible strategy of using interlayer modulation for long-term Li+ extraction by LiAl-LDH from SO42−-type brines, and inspires the development and design of next-generation lithium adsorbents.

Abstract Image

引导锂铝层状双氢氧化物珠的层间相互作用,实现从硫酸盐型盐水中稳定提锂
锂铝层状双氢氧化物(LiAl-LDH)是从高 Mg2+/Li+ 比率的盐湖卤水中提取锂的最成功的工业化吸附剂。然而,它在 SO42 型盐湖中的应用却有一个 "致命弱点",即由于 SO42- 自发插层产生的解吸障碍而导致 Li+ 萃取效果不佳。在此,我们开发了一种引导层间相互作用的新策略,即在 LiAl-LDH 珠(BLDH-P)的层间嵌入部分 PO43-。由于夹层内 SO42- 的结合能(Eb)较低,扩散能障较强,BLDH-P 具有防止 SO42- 插层的特性,在罗布泊盐水(世界上最大的 SO42 型盐水)中的吸附和解吸能力在长期循环使用过程中保持不变。BLDH-P 还表现出优异的 Li+ 萃取性能,这是扩大层间距和选择性静电排斥的结果。静态和动态的 Li+ 摄取量分别达到 5.26 mg/g 和 3.96 mg/g,Li+/K+、Li+/Na+ 和 Li+/Mg2+ 的分离因子分别为 39.84、48.14 和 144.87,优于已报道和商业化的 LiAl-LDH。这项研究提供了一种利用层间调制实现 LiAl-LDH 从 SO42 型盐水中长期萃取 Li+ 的可行策略,并对下一代锂吸附剂的开发和设计有所启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信