{"title":"Thermal modeling and analysis of multi-mover motors considering mover quantity and dynamic states","authors":"Yani Zhang, Xuzhen Huang, Zheng Wang","doi":"10.1016/j.ijthermalsci.2024.109429","DOIUrl":null,"url":null,"abstract":"<div><p>—Multi-mover motors are widely used in logistics transportation systems. However, the unique number of movers and variations in motion states complicate the distribution of loss and thermal characteristics, thereby increasing the difficulty of calculating temperature rise. In this paper, a winding loss calculation method that considers the multi-condition and dynamic characteristics of multi-mover motors is proposed. The convective heat transfer coefficient (CHTC) is calculated using computational fluid dynamics (CFD) and response surface methodology (RSM), with a detailed analysis of velocity distribution characteristics. The interactive effects of mover speed, acceleration, mover quantity, and the distance between adjacent movers on the CHTC are investigated. A simplified yet accurate thermal modeling is developed, reducing the required time for a single operating condition from 4 h to 0.5 h, with an error of only 4 %. Through both single variable and multivariable analyses, the thermal characteristics of multi-mover motors under different conditions are revealed. Finally, a prototype is created and tested under various operating conditions. The discrepancies between the experimental and calculated values are within 5 %, validating the accuracy of the proposed model and analysis.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"208 ","pages":"Article 109429"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924005519","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
—Multi-mover motors are widely used in logistics transportation systems. However, the unique number of movers and variations in motion states complicate the distribution of loss and thermal characteristics, thereby increasing the difficulty of calculating temperature rise. In this paper, a winding loss calculation method that considers the multi-condition and dynamic characteristics of multi-mover motors is proposed. The convective heat transfer coefficient (CHTC) is calculated using computational fluid dynamics (CFD) and response surface methodology (RSM), with a detailed analysis of velocity distribution characteristics. The interactive effects of mover speed, acceleration, mover quantity, and the distance between adjacent movers on the CHTC are investigated. A simplified yet accurate thermal modeling is developed, reducing the required time for a single operating condition from 4 h to 0.5 h, with an error of only 4 %. Through both single variable and multivariable analyses, the thermal characteristics of multi-mover motors under different conditions are revealed. Finally, a prototype is created and tested under various operating conditions. The discrepancies between the experimental and calculated values are within 5 %, validating the accuracy of the proposed model and analysis.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.