Thermal modeling and analysis of multi-mover motors considering mover quantity and dynamic states

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
{"title":"Thermal modeling and analysis of multi-mover motors considering mover quantity and dynamic states","authors":"","doi":"10.1016/j.ijthermalsci.2024.109429","DOIUrl":null,"url":null,"abstract":"<div><p>—Multi-mover motors are widely used in logistics transportation systems. However, the unique number of movers and variations in motion states complicate the distribution of loss and thermal characteristics, thereby increasing the difficulty of calculating temperature rise. In this paper, a winding loss calculation method that considers the multi-condition and dynamic characteristics of multi-mover motors is proposed. The convective heat transfer coefficient (CHTC) is calculated using computational fluid dynamics (CFD) and response surface methodology (RSM), with a detailed analysis of velocity distribution characteristics. The interactive effects of mover speed, acceleration, mover quantity, and the distance between adjacent movers on the CHTC are investigated. A simplified yet accurate thermal modeling is developed, reducing the required time for a single operating condition from 4 h to 0.5 h, with an error of only 4 %. Through both single variable and multivariable analyses, the thermal characteristics of multi-mover motors under different conditions are revealed. Finally, a prototype is created and tested under various operating conditions. The discrepancies between the experimental and calculated values are within 5 %, validating the accuracy of the proposed model and analysis.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924005519","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

—Multi-mover motors are widely used in logistics transportation systems. However, the unique number of movers and variations in motion states complicate the distribution of loss and thermal characteristics, thereby increasing the difficulty of calculating temperature rise. In this paper, a winding loss calculation method that considers the multi-condition and dynamic characteristics of multi-mover motors is proposed. The convective heat transfer coefficient (CHTC) is calculated using computational fluid dynamics (CFD) and response surface methodology (RSM), with a detailed analysis of velocity distribution characteristics. The interactive effects of mover speed, acceleration, mover quantity, and the distance between adjacent movers on the CHTC are investigated. A simplified yet accurate thermal modeling is developed, reducing the required time for a single operating condition from 4 h to 0.5 h, with an error of only 4 %. Through both single variable and multivariable analyses, the thermal characteristics of multi-mover motors under different conditions are revealed. Finally, a prototype is created and tested under various operating conditions. The discrepancies between the experimental and calculated values are within 5 %, validating the accuracy of the proposed model and analysis.

多电机热建模与分析(考虑电机数量和动态状态
-多电机广泛应用于物流运输系统。然而,独特的动子数量和运动状态的变化使损耗和热特性的分布变得复杂,从而增加了温升计算的难度。本文提出了一种绕组损耗计算方法,该方法考虑了多电机的多工况和动态特性。利用计算流体动力学(CFD)和响应面方法(RSM)计算了对流传热系数(CHTC),并详细分析了速度分布特征。研究了移动器速度、加速度、移动器数量和相邻移动器之间的距离对 CHTC 的交互影响。建立了一个简化但精确的热建模,将单一运行条件所需的时间从 4 小时减少到 0.5 小时,误差仅为 4%。通过单变量和多变量分析,揭示了多电机在不同条件下的热特性。最后,创建了一个原型,并在各种运行条件下进行了测试。实验值和计算值之间的误差在 5 % 以内,验证了所提出模型和分析的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信