{"title":"Evidence for landslides in Sisyphi Cavi (Noachis Terra, Mars): Slope evolution and role of endogenous preparatory factors","authors":"","doi":"10.1016/j.icarus.2024.116314","DOIUrl":null,"url":null,"abstract":"<div><p>The surface of Mars is characterized by the presence of numerous gravity-induced processes and mass movements with greatly variable sizes and peculiarities. Detailed geomorphological studies have recently made it possible to identify many landslide-like landforms along the slopes bordering pits of Sisyphi Cavi in Noachis Terra, the southern hemisphere of Mars. These pieces of evidence are generally characterized by extended trenches, sometimes associated with uphill- or downhill-facing scarps. In this study, the gravity-induced processes observed in this region of Mars, and especially those present in a closed pit of the eastern sector, are described for the first time. A quantitative stress-strain analysis was performed, and it excludes a type of deformation process that could invoke creep processes (“viscosity-driven”) but rather favors instability induced by stress-perturbations in the slope more concentrated over time (“force-driven”). In particular, we performed a parametric analysis on both viscosity and stiffness parameters of the materials involved. It demonstrates that the time necessary for the rheological evolution of deformational processes associated with the observed landforms are compatible with genesis of short-term instabilities. This finding has significant implications for the origin of the depressed forms within and close to the study area, which are characterized by unstable slopes present at their edges. It is therefore not necessary to invoke the role of “viscosity-driven” creep processes to explain the origin of the shapes associated with the observed gravity-induced slope instabilities. The reported results drive towards a new interpretative scenario of morphological evolution of the widespread pits in the study area in terms of efficiency of endogenous processes (such as hypabyssal magmatism) which characterize the studied area of Mars, even if it is not possible to exclude the role of exogenous processes.</p></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524003749","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The surface of Mars is characterized by the presence of numerous gravity-induced processes and mass movements with greatly variable sizes and peculiarities. Detailed geomorphological studies have recently made it possible to identify many landslide-like landforms along the slopes bordering pits of Sisyphi Cavi in Noachis Terra, the southern hemisphere of Mars. These pieces of evidence are generally characterized by extended trenches, sometimes associated with uphill- or downhill-facing scarps. In this study, the gravity-induced processes observed in this region of Mars, and especially those present in a closed pit of the eastern sector, are described for the first time. A quantitative stress-strain analysis was performed, and it excludes a type of deformation process that could invoke creep processes (“viscosity-driven”) but rather favors instability induced by stress-perturbations in the slope more concentrated over time (“force-driven”). In particular, we performed a parametric analysis on both viscosity and stiffness parameters of the materials involved. It demonstrates that the time necessary for the rheological evolution of deformational processes associated with the observed landforms are compatible with genesis of short-term instabilities. This finding has significant implications for the origin of the depressed forms within and close to the study area, which are characterized by unstable slopes present at their edges. It is therefore not necessary to invoke the role of “viscosity-driven” creep processes to explain the origin of the shapes associated with the observed gravity-induced slope instabilities. The reported results drive towards a new interpretative scenario of morphological evolution of the widespread pits in the study area in terms of efficiency of endogenous processes (such as hypabyssal magmatism) which characterize the studied area of Mars, even if it is not possible to exclude the role of exogenous processes.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.