{"title":"Bilayer graphene, bilayer GeC and graphene/GeC bilayer heterostructure as anode materials for lithium-ion batteries: First-principles calculations","authors":"","doi":"10.1016/j.jpcs.2024.112344","DOIUrl":null,"url":null,"abstract":"<div><p>There is a great effort to develop the high-efficient anode materials for lithium-ion batteries with high stability and mobility. In this paper, we adopt the first-principles calculations to study the electrochemical properties of Li intercalation within bilayer graphene (BLG), bilayer GeC (BLGeC) and graphene/GeC bilayer heterostructure (BLGGeC) as anode materials. Our calculations disclose the following findings: (1) The interlayer is modulated by the stacking patterns and bilayer species. (2) The most energetically favorite intercalation of the Li atom is achieved in BLG with AA stacking because of the lowest adsorption energy. (3) The descending order of energy barriers is BLGGeC > BLGeC > BLG. The low diffusion barriers of BLG (0.025 eV) and BLGeC (0.09 eV) imply their high charging/discharging rates. Finally, the findings underline that the bilayer is a promising anode material and its electrochemical characteristics can be changed by adjusting the stacking configurations and its species.</p></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724004797","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a great effort to develop the high-efficient anode materials for lithium-ion batteries with high stability and mobility. In this paper, we adopt the first-principles calculations to study the electrochemical properties of Li intercalation within bilayer graphene (BLG), bilayer GeC (BLGeC) and graphene/GeC bilayer heterostructure (BLGGeC) as anode materials. Our calculations disclose the following findings: (1) The interlayer is modulated by the stacking patterns and bilayer species. (2) The most energetically favorite intercalation of the Li atom is achieved in BLG with AA stacking because of the lowest adsorption energy. (3) The descending order of energy barriers is BLGGeC > BLGeC > BLG. The low diffusion barriers of BLG (0.025 eV) and BLGeC (0.09 eV) imply their high charging/discharging rates. Finally, the findings underline that the bilayer is a promising anode material and its electrochemical characteristics can be changed by adjusting the stacking configurations and its species.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.