Shitong Yang , Hao Dong , Zhenguo Zhang , Yunjie Wang , Xuetao Niu , Xiaohui Lu
{"title":"An enhancing flexibility piezoelectric stick-slip actuator by introducing perforation of flexible hinge","authors":"Shitong Yang , Hao Dong , Zhenguo Zhang , Yunjie Wang , Xuetao Niu , Xiaohui Lu","doi":"10.1016/j.sna.2024.115871","DOIUrl":null,"url":null,"abstract":"<div><p>Piezoelectric stick-slip actuators (PSSAs) utilize sliding friction between the mover and stator to convert and transmit motion. However, the phenomenon of backward displacement often hinders the output performance of PSSAs. This paper proposes a method to mitigate backward displacement and enhance output performance by modifying the overall flexibility of the actuator. The key idea of this approach is to propose a novel flexible hinge structure and apply it to PSSA. Numerical calculations and finite element analysis confirm that the flexibility and output performance of the PSSA are significantly improved. The method's feasibility is supported by comparing experiments. The experimental results show that under the same locking force, the optimal excitation frequency of perforated Elliptical Flexure Hinge (EFH) is significantly lower than the non-perforated EFH and the speed is increased over 53 %. Furthermore, the PSSA has a maximum load capacity of 190 g, which is 31.7 times its own weight (6 g). The proposed PSSA can provide valuable insights for its application in precision motion control systems in the foreseeable future.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"379 ","pages":"Article 115871"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008653","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Piezoelectric stick-slip actuators (PSSAs) utilize sliding friction between the mover and stator to convert and transmit motion. However, the phenomenon of backward displacement often hinders the output performance of PSSAs. This paper proposes a method to mitigate backward displacement and enhance output performance by modifying the overall flexibility of the actuator. The key idea of this approach is to propose a novel flexible hinge structure and apply it to PSSA. Numerical calculations and finite element analysis confirm that the flexibility and output performance of the PSSA are significantly improved. The method's feasibility is supported by comparing experiments. The experimental results show that under the same locking force, the optimal excitation frequency of perforated Elliptical Flexure Hinge (EFH) is significantly lower than the non-perforated EFH and the speed is increased over 53 %. Furthermore, the PSSA has a maximum load capacity of 190 g, which is 31.7 times its own weight (6 g). The proposed PSSA can provide valuable insights for its application in precision motion control systems in the foreseeable future.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...