A comprehensive study on geometric shape optical soliton solutions to the time-factional nonlinear Schrödinger-Hirota equation

Q1 Mathematics
Mst. Munny Khatun , Shahansha Khan , M. Ali Akbar
{"title":"A comprehensive study on geometric shape optical soliton solutions to the time-factional nonlinear Schrödinger-Hirota equation","authors":"Mst. Munny Khatun ,&nbsp;Shahansha Khan ,&nbsp;M. Ali Akbar","doi":"10.1016/j.padiff.2024.100917","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate the analytical soliton solutions of a fundamental model, namely the nonlinear Schrödinger-Hirota equation, in the context of beta time-fractional derivative. We adopt the (ω′/ω,  1/ω)-expansion method, which is a reliable and straightforward approach to extract fresh and general soliton solutions in terms of hyperbolic, trigonometric, and rational functions. The solitons include anti-kink, anti-bell-shaped, bell-shaped, and periodic solitons. These solitons have significant applications in various scientific fields, such as optical fiber communications, signal processing, plasma physics, and trans-oceanic data transfer. This study demonstrates the significance of fractional-order differentiation in revealing new solitons. We also provide a comprehensive comparison with existing literature in normal and anomalous dispersion regions, highlighting the uniqueness of the solutions. Moreover, the graphical representations are used to illustrate the properties and potential applications of these solitons. This research might contribute to the advancement of nonlinear optical research and technology.</p></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100917"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666818124003036/pdfft?md5=6b8893e23574f68f993ed1cc6118addc&pid=1-s2.0-S2666818124003036-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the analytical soliton solutions of a fundamental model, namely the nonlinear Schrödinger-Hirota equation, in the context of beta time-fractional derivative. We adopt the (ω′/ω,  1/ω)-expansion method, which is a reliable and straightforward approach to extract fresh and general soliton solutions in terms of hyperbolic, trigonometric, and rational functions. The solitons include anti-kink, anti-bell-shaped, bell-shaped, and periodic solitons. These solitons have significant applications in various scientific fields, such as optical fiber communications, signal processing, plasma physics, and trans-oceanic data transfer. This study demonstrates the significance of fractional-order differentiation in revealing new solitons. We also provide a comprehensive comparison with existing literature in normal and anomalous dispersion regions, highlighting the uniqueness of the solutions. Moreover, the graphical representations are used to illustrate the properties and potential applications of these solitons. This research might contribute to the advancement of nonlinear optical research and technology.

时域非线性薛定谔-希罗塔方程几何形状光孤子解的综合研究
在本研究中,我们研究了一个基本模型,即非线性薛定谔-希罗塔方程,在β时分导数背景下的解析孤子解。我们采用(ω′/ω, 1/ω)展开法,这是一种可靠而直接的方法,可以从双曲函数、三角函数和有理函数中提取新鲜而一般的孤子解。这些孤子包括反扭结孤子、反钟形孤子、钟形孤子和周期孤子。这些孤子在光纤通信、信号处理、等离子体物理和跨洋数据传输等多个科学领域都有重要应用。本研究证明了分数阶微分在揭示新孤子方面的重要性。我们还在正常色散和反常色散区域与现有文献进行了全面比较,突出了解的独特性。此外,我们还使用图形表示法来说明这些孤子的特性和潜在应用。这项研究可能有助于推动非线性光学研究和技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信