Decay estimates for Beam equations with potential in dimension three

IF 1.7 2区 数学 Q1 MATHEMATICS
Miao Chen , Ping Li , Avy Soffer , Xiaohua Yao
{"title":"Decay estimates for Beam equations with potential in dimension three","authors":"Miao Chen ,&nbsp;Ping Li ,&nbsp;Avy Soffer ,&nbsp;Xiaohua Yao","doi":"10.1016/j.jfa.2024.110671","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to studying time decay estimates of the solution for Beam equation (higher order type wave equation) with a potential<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi><mo>)</mo><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mi>u</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span></span></span> in dimension three, where <em>V</em> is a real-valued and decaying potential. Assume that zero is a regular point of <span><math><mi>H</mi><mo>=</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi></math></span>, we first prove the following optimal time decay estimates of the solution operators<span><span><span><math><msub><mrow><mo>‖</mo><mi>cos</mi><mo>⁡</mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt><mo>)</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>≲</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mspace></mspace><mspace></mspace><mtext>and</mtext><msub><mrow><mo>‖</mo><mfrac><mrow><mi>sin</mi><mo>⁡</mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt><mo>)</mo></mrow><mrow><msqrt><mrow><mi>H</mi></mrow></msqrt></mrow></mfrac><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>≲</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>.</mo></math></span></span></span> Moreover, if zero is a resonance of <em>H</em>, then time decay of the solution operators also is considered. It is noted that a first-kind resonance does not affect the decay rates of the propagator operators <span><math><mi>cos</mi><mo>⁡</mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt><mo>)</mo></math></span> and <span><math><mfrac><mrow><mi>sin</mi><mo>⁡</mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt><mo>)</mo></mrow><mrow><msqrt><mrow><mi>H</mi></mrow></msqrt></mrow></mfrac></math></span>, but their decay will be significantly changed for the second and third-kind resonances.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110671"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003598","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to studying time decay estimates of the solution for Beam equation (higher order type wave equation) with a potentialutt+(Δ2+V)u=0,u(0,x)=f(x),ut(0,x)=g(x) in dimension three, where V is a real-valued and decaying potential. Assume that zero is a regular point of H=Δ2+V, we first prove the following optimal time decay estimates of the solution operatorscos(tH)Pac(H)L1L|t|32andsin(tH)HPac(H)L1L|t|12. Moreover, if zero is a resonance of H, then time decay of the solution operators also is considered. It is noted that a first-kind resonance does not affect the decay rates of the propagator operators cos(tH) and sin(tH)H, but their decay will be significantly changed for the second and third-kind resonances.

三维势能束方程的衰减估计值
本文致力于研究三维中具有势utt+(Δ2+V)u=0,u(0,x)=f(x),ut(0,x)=g(x)的梁方程(高阶型波方程)解的时间衰减估计,其中 V 为实值衰减势。假设零点是 H=Δ2+V 的正则点,我们首先证明以下解算子的最优时间衰减估计值‖cos(tH)Pac(H)‖L1→∞≲|t|-32 和‖sin(tH)HPac(H)‖L1→∞≲|t|-12。此外,如果零点是 H 的共振,则还要考虑解算子的时间衰减。我们注意到,第一类共振不会影响传播算子 cos(tH) 和 sin(tH)H 的衰减率,但它们的衰减在第二类和第三类共振时会发生显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信