Main features of the geomagnetic effect of the October 14, 2023 annular solar eclipse in the Americas

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Leonid F. Chernogor, Mariia Yu. Holub, Victor T. Rozumenko
{"title":"Main features of the geomagnetic effect of the October 14, 2023 annular solar eclipse in the Americas","authors":"Leonid F. Chernogor,&nbsp;Mariia Yu. Holub,&nbsp;Victor T. Rozumenko","doi":"10.1016/j.jastp.2024.106354","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this paper is to investigate temporal variations in the northward, <em>X</em>, eastward, <em>Y</em>, and downward, Z, components of the geomagnetic field recorded during the October 14, 2023 annular solar eclipse, which main features include its annularity, the eclipse occurrence from local dawn to local dusk, its magnitude variation from 0.30 to 0.86, and the longest ever-observed path across the mainland of the Americas, covering latitudes from ∼65°N to 12°S. The analysis was made possible due to the data on temporal variations in the northward, <em>X</em>, eastward, <em>Y</em>, and downward, Z, components of the geomagnetic field collected at thirteen International Real-time Magnetic Observatory Network magnetometer stations (<span><span>https://imag-data.bgs.ac.uk/GIN_V1/GINForms2</span><svg><path></path></svg></span>). The solar eclipse acted to cause non-sinusoidal and quasi-sinusoidal perturbations having temporal durations of 180–240 min in all geomagnetic field components on a global scale (∼8000 km). The <em>X</em>-component experienced the largest perturbations attaining 10–20 nT, and the <em>Z</em>-component underwent the smallest disturbances. The quasi-sinusoidal perturbation amplitude did not exceed 5–6 nT, and the period most often showed variations within 15–40 min. The magnetic effect exhibited a tendency to increase with solar eclipse magnitude, while the magnitude of the effect has been shown to be significantly dependent on geographic coordinates, local time, ionospheric state, and the patterns of ionospheric currents as well. During the solar eclipse, the electron density depletion was estimated to be ∼0.10 to ∼0.40–0.60 when the eclipse obscuration <em>A</em><sub><em>max</em></sub> varied from 19% to 82%. The movement of the lunar shadow was accompanied by the generation of atmospheric gravity waves with period of ∼10–80 min and by electron density perturbations with amplitudes of the order of 0.01–0.03. The estimates made on the assumption that the magnetic effect is due to the ionospheric current disruptions show good agreement with the observations.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"265 ","pages":"Article 106354"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001822","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to investigate temporal variations in the northward, X, eastward, Y, and downward, Z, components of the geomagnetic field recorded during the October 14, 2023 annular solar eclipse, which main features include its annularity, the eclipse occurrence from local dawn to local dusk, its magnitude variation from 0.30 to 0.86, and the longest ever-observed path across the mainland of the Americas, covering latitudes from ∼65°N to 12°S. The analysis was made possible due to the data on temporal variations in the northward, X, eastward, Y, and downward, Z, components of the geomagnetic field collected at thirteen International Real-time Magnetic Observatory Network magnetometer stations (https://imag-data.bgs.ac.uk/GIN_V1/GINForms2). The solar eclipse acted to cause non-sinusoidal and quasi-sinusoidal perturbations having temporal durations of 180–240 min in all geomagnetic field components on a global scale (∼8000 km). The X-component experienced the largest perturbations attaining 10–20 nT, and the Z-component underwent the smallest disturbances. The quasi-sinusoidal perturbation amplitude did not exceed 5–6 nT, and the period most often showed variations within 15–40 min. The magnetic effect exhibited a tendency to increase with solar eclipse magnitude, while the magnitude of the effect has been shown to be significantly dependent on geographic coordinates, local time, ionospheric state, and the patterns of ionospheric currents as well. During the solar eclipse, the electron density depletion was estimated to be ∼0.10 to ∼0.40–0.60 when the eclipse obscuration Amax varied from 19% to 82%. The movement of the lunar shadow was accompanied by the generation of atmospheric gravity waves with period of ∼10–80 min and by electron density perturbations with amplitudes of the order of 0.01–0.03. The estimates made on the assumption that the magnetic effect is due to the ionospheric current disruptions show good agreement with the observations.

2023 年 10 月 14 日美洲日环食地磁效应的主要特征
本文旨在研究 2023 年 10 月 14 日日环食期间记录到的地磁场向北、X、向东、Y 和向下 Z 分量的时间变化,其主要特征包括日环食、日食发生时间为当地黎明至当地黄昏、食甚变化范围为 0.30 至 0.86,以及有史以来观测到的穿越美洲大陆的最长路径,覆盖纬度为北纬 65°至南纬 12°。13 个国际实时磁场观测网络磁强计站 (https://imag-data.bgs.ac.uk/GIN_V1/GINForms2) 收集到的地磁场向北分量 X、向东分量 Y 和向下分量 Z 的时间变化数据使分析成为可能。日食对全球范围内(∼8000 公里)的所有地磁场分量都产生了非正弦和准正弦扰动,时间持续 180-240 分钟。X 分量的扰动最大,达到 10-20 nT,Z 分量的扰动最小。准正弦扰动振幅不超过 5-6 nT,周期多在 15-40 分钟内变化。磁效应随着日食幅度的增大而增强,而效应的大小则与地理坐标、当地时间、电离层状态以及电离层电流模式有很大关系。日食期间,当日食遮蔽率 Amax 在 19% 至 82% 之间变化时,电子密度损耗估计为 ∼0.10 至 ∼0.40-0.60。月影的移动伴随着周期为 10-80 分钟的大气重力波和振幅为 0.01-0.03 的电子密度扰动。假定磁效应是由电离层电流扰动引起的,所做的估计与观测结果十分吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Atmospheric and Solar-Terrestrial Physics
Journal of Atmospheric and Solar-Terrestrial Physics 地学-地球化学与地球物理
CiteScore
4.10
自引率
5.30%
发文量
95
审稿时长
6 months
期刊介绍: The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them. The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions. Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信