Dongsheng Li, Xu Zheng, Huijie He, Philippe Boutinaud, Sanshui Xiao, Jiamin Xu, Chuanlong Wang, Yihua Hu, Fengwen Kang
{"title":"A 20-Year Review of Inorganic Photochromic Materials: Design Consideration, Synthesis Methods, Classifications, Optical Properties, Mechanism Models, and Emerging Applications","authors":"Dongsheng Li, Xu Zheng, Huijie He, Philippe Boutinaud, Sanshui Xiao, Jiamin Xu, Chuanlong Wang, Yihua Hu, Fengwen Kang","doi":"10.1002/lpor.202400742","DOIUrl":null,"url":null,"abstract":"<p>Inorganic photochromic materials (i.e., <i>in</i>-PCMs) are developed as a research hot point in the lighting field due to their excellent optical characteristics, impressive body color modulation, etc. The aim of this work is to make a review on the developments of multi-metals <i>in</i>-PCMs (i.e., <i>min</i>-PCMs) in the past 20 years. The review is structured based on the reversible coloration, crystal hosts, doped ions, PC properties, and mechanism of <i>min</i>-PCMs and their applications. The synthesis methods of <i>min</i>-PCMs are reviewed first and then the <i>min</i>-PCMs are classified according to the types of the doped ions (i.e., single rare-earth (i.e., RE) ion, multi RE ions, non-RE ions, and/or the coupled arrangement of these ions). Meanwhile, the <i>min</i>-PCMs co-doped with RE and non-RE ions, together with RE- and/or non-RE-doped and co-doped dual crystal matrix, are also disclosed. In the 4<i>th</i> section, we underline the PC mechanisms and show the perspectives on how to produce the PC and obtain the related <i>min</i>-PCMs. After that, diverse emerging applications of <i>min</i>-PCMs are summarized, which include optical storage, anti-counterfeiting, bio-imaging, light detection, temperature sensing, photocatalysis, and smart windows. In the end, we conclude this review and forecast the promising opportunities and potential challenges of <i>min</i>-PCMs in the future.</p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"18 11","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202400742","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Inorganic photochromic materials (i.e., in-PCMs) are developed as a research hot point in the lighting field due to their excellent optical characteristics, impressive body color modulation, etc. The aim of this work is to make a review on the developments of multi-metals in-PCMs (i.e., min-PCMs) in the past 20 years. The review is structured based on the reversible coloration, crystal hosts, doped ions, PC properties, and mechanism of min-PCMs and their applications. The synthesis methods of min-PCMs are reviewed first and then the min-PCMs are classified according to the types of the doped ions (i.e., single rare-earth (i.e., RE) ion, multi RE ions, non-RE ions, and/or the coupled arrangement of these ions). Meanwhile, the min-PCMs co-doped with RE and non-RE ions, together with RE- and/or non-RE-doped and co-doped dual crystal matrix, are also disclosed. In the 4th section, we underline the PC mechanisms and show the perspectives on how to produce the PC and obtain the related min-PCMs. After that, diverse emerging applications of min-PCMs are summarized, which include optical storage, anti-counterfeiting, bio-imaging, light detection, temperature sensing, photocatalysis, and smart windows. In the end, we conclude this review and forecast the promising opportunities and potential challenges of min-PCMs in the future.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.