Shin Hyung Lee,Hyo Jin Kim,Jae-Hyun Kim,Gwang Yeol Park,Sun-Kyung Kim,Sung-Min Lee
{"title":"Rational strategy for power doubling of monolithic multijunction III-V photovoltaics by accommodating attachable scattering waveguides.","authors":"Shin Hyung Lee,Hyo Jin Kim,Jae-Hyun Kim,Gwang Yeol Park,Sun-Kyung Kim,Sung-Min Lee","doi":"10.1038/s41377-024-01628-6","DOIUrl":null,"url":null,"abstract":"While waveguide-based light concentrators offer significant advantages, their application has not been considered an interesting option for assisting multijunction or other two-terminal tandem solar cells. In this study, we present a simple yet effective approach to enhancing the output power of transfer-printed multijunction InGaP/GaAs solar cells. By utilizing a simply combinable waveguide concentrator featuring a coplanar waveguide with BaSO4 Mie scattering elements, we enable the simultaneous absorption of directly illuminated solar flux and indirectly waveguided flux. The deployment of cells is optimized for front-surface photon collection in monofacial cells. Through systematic comparisons across various waveguide parameters, supported by both experimental and theoretical quantifications, we demonstrate a remarkable improvement in the maximum output power of a 26%-efficient cell, achieving an enhancement of ~93% with the integration of the optimal scattering waveguide. Additionally, a series of supplementary tests are conducted to explore the effective waveguide size, validate enhancements in arrayed cell module performance, and assess the drawbacks associated with rear illumination. These findings provide a comprehensive understanding of our proposed approach towards advancing multi-junction photovoltaics.","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"19 1","pages":"261"},"PeriodicalIF":20.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01628-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
While waveguide-based light concentrators offer significant advantages, their application has not been considered an interesting option for assisting multijunction or other two-terminal tandem solar cells. In this study, we present a simple yet effective approach to enhancing the output power of transfer-printed multijunction InGaP/GaAs solar cells. By utilizing a simply combinable waveguide concentrator featuring a coplanar waveguide with BaSO4 Mie scattering elements, we enable the simultaneous absorption of directly illuminated solar flux and indirectly waveguided flux. The deployment of cells is optimized for front-surface photon collection in monofacial cells. Through systematic comparisons across various waveguide parameters, supported by both experimental and theoretical quantifications, we demonstrate a remarkable improvement in the maximum output power of a 26%-efficient cell, achieving an enhancement of ~93% with the integration of the optimal scattering waveguide. Additionally, a series of supplementary tests are conducted to explore the effective waveguide size, validate enhancements in arrayed cell module performance, and assess the drawbacks associated with rear illumination. These findings provide a comprehensive understanding of our proposed approach towards advancing multi-junction photovoltaics.