Vibration mixing for enhanced paper-based recombinase polymerase amplification†

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Lab on a Chip Pub Date : 2024-09-20 DOI:10.1039/D4LC00592A
Kelli N. Shimazu, Andrew T. Bender, Per G. Reinhall and Jonathan D. Posner
{"title":"Vibration mixing for enhanced paper-based recombinase polymerase amplification†","authors":"Kelli N. Shimazu, Andrew T. Bender, Per G. Reinhall and Jonathan D. Posner","doi":"10.1039/D4LC00592A","DOIUrl":null,"url":null,"abstract":"<p >Isothermal nucleic acid amplification tests (NAATs) are a vital tool for point-of-care (POC) diagnostics. These assays are well-suited for rapid, low-cost POC diagnostics for infectious diseases compared to traditional PCR tests conducted in central laboratories. There has been significant development of POC NAATs using paper-based diagnostic devices because they provide an affordable, user-friendly, and easy to store format; however, the difficulties in integrating separate liquid components, resuspending dried reagents, and achieving a low limit of detection hinder their use in commercial applications. Several studies report low assay efficiencies, poor detection output, and poorer limits of detection in porous membranes compared to traditional tube-based protocols. Recombinase polymerase amplification is a rapid, isothermal NAAT that is highly suited for POC applications, but requires viscous reaction conditions that has poor performance when amplifying in a porous paper membrane. In this work, we show that we can dramatically improve the performance of membrane-based recombinase polymerase amplification (RPA) of HIV-1 DNA and viral RNA by employing a coin cell-based vibration mixing platform. We achieve a limit of detection of 12 copies of DNA per reaction, nearly 50% reduction in time to threshold (from ∼10 minutes to ∼5 minutes), and an overall fluorescence output increase up to 16-fold when compared to unmixed experiments. This active mixing strategy enables reactions where the target and reaction cofactors are isolated from each other prior to the reaction. We also demonstrate amplification using a low-cost vibration motor for both temperature control and mixing, without the requirement of any additional heating components.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 20","pages":" 4879-4891"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00592a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Isothermal nucleic acid amplification tests (NAATs) are a vital tool for point-of-care (POC) diagnostics. These assays are well-suited for rapid, low-cost POC diagnostics for infectious diseases compared to traditional PCR tests conducted in central laboratories. There has been significant development of POC NAATs using paper-based diagnostic devices because they provide an affordable, user-friendly, and easy to store format; however, the difficulties in integrating separate liquid components, resuspending dried reagents, and achieving a low limit of detection hinder their use in commercial applications. Several studies report low assay efficiencies, poor detection output, and poorer limits of detection in porous membranes compared to traditional tube-based protocols. Recombinase polymerase amplification is a rapid, isothermal NAAT that is highly suited for POC applications, but requires viscous reaction conditions that has poor performance when amplifying in a porous paper membrane. In this work, we show that we can dramatically improve the performance of membrane-based recombinase polymerase amplification (RPA) of HIV-1 DNA and viral RNA by employing a coin cell-based vibration mixing platform. We achieve a limit of detection of 12 copies of DNA per reaction, nearly 50% reduction in time to threshold (from ∼10 minutes to ∼5 minutes), and an overall fluorescence output increase up to 16-fold when compared to unmixed experiments. This active mixing strategy enables reactions where the target and reaction cofactors are isolated from each other prior to the reaction. We also demonstrate amplification using a low-cost vibration motor for both temperature control and mixing, without the requirement of any additional heating components.

Abstract Image

振动混合增强纸基重组酶聚合酶扩增。
等温核酸扩增检测(NAAT)是床旁诊断(POC)的重要工具。与在中心实验室进行的传统 PCR 检测相比,这些检测方法非常适合用于快速、低成本的 POC 诊断传染病。使用纸质诊断设备的 POC NAAT 已经得到了长足的发展,因为它们价格低廉、使用方便、易于储存;然而,在整合独立的液体成分、重新悬浮干燥试剂以及实现低检测限等方面存在的困难阻碍了它们在商业应用中的使用。一些研究报告称,与传统的管式方案相比,多孔膜的检测效率低、检测输出差、检测限也更低。重组酶聚合酶扩增是一种快速、等温的 NAAT,非常适合 POC 应用,但需要粘稠的反应条件,在多孔纸膜中扩增时性能较差。在这项工作中,我们展示了通过采用基于纽扣细胞的振动混合平台,我们可以显著提高基于膜的重组酶聚合酶扩增(RPA)对 HIV-1 DNA 和病毒 RNA 的性能。与未经混合的实验相比,我们实现了每个反应 12 个 DNA 拷贝的检测限,阈值时间缩短了近 50%(从 10 分钟到 5 分钟),整体荧光输出增加了 16 倍。这种主动混合策略使目标物和反应辅因子能够在反应前相互隔离。我们还展示了使用低成本振动电机进行温度控制和混合的放大效果,无需任何额外的加热元件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信