Interactive computer-aided diagnosis on medical image using large language models

Sheng Wang, Zihao Zhao, Xi Ouyang, Tianming Liu, Qian Wang, Dinggang Shen
{"title":"Interactive computer-aided diagnosis on medical image using large language models","authors":"Sheng Wang, Zihao Zhao, Xi Ouyang, Tianming Liu, Qian Wang, Dinggang Shen","doi":"10.1038/s44172-024-00271-8","DOIUrl":null,"url":null,"abstract":"Computer-aided diagnosis (CAD) has advanced medical image analysis, while large language models (LLMs) have shown potential in clinical applications. However, LLMs struggle to interpret medical images, which are critical for decision-making. Here we show a strategy integrating LLMs with CAD networks. The framework uses LLMs’ medical knowledge and reasoning to enhance CAD network outputs, such as diagnosis, lesion segmentation, and report generation, by summarizing information in natural language. The generated reports are of higher quality and can improve the performance of vision-based CAD models. In chest X-rays, an LLM using ChatGPT improved diagnosis performance by 16.42 percentage points compared to state-of-the-art models, while GPT-3 provided a 15.00 percentage point F1-score improvement. Our strategy allows accurate report generation and creates a patient-friendly interactive system, unlike conventional CAD systems only understood by professionals. This approach has the potential to revolutionize clinical decision-making and patient communication. Wang et al. developed a machine learning strategy for improving large language model to understand and analyse visual medical information. Their framework seamlessly integrates medical image computer-aided diagnosis networks with large language models, converting medical image inputs into a clear and concise textual summary of the patient’s condition.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00271-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00271-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computer-aided diagnosis (CAD) has advanced medical image analysis, while large language models (LLMs) have shown potential in clinical applications. However, LLMs struggle to interpret medical images, which are critical for decision-making. Here we show a strategy integrating LLMs with CAD networks. The framework uses LLMs’ medical knowledge and reasoning to enhance CAD network outputs, such as diagnosis, lesion segmentation, and report generation, by summarizing information in natural language. The generated reports are of higher quality and can improve the performance of vision-based CAD models. In chest X-rays, an LLM using ChatGPT improved diagnosis performance by 16.42 percentage points compared to state-of-the-art models, while GPT-3 provided a 15.00 percentage point F1-score improvement. Our strategy allows accurate report generation and creates a patient-friendly interactive system, unlike conventional CAD systems only understood by professionals. This approach has the potential to revolutionize clinical decision-making and patient communication. Wang et al. developed a machine learning strategy for improving large language model to understand and analyse visual medical information. Their framework seamlessly integrates medical image computer-aided diagnosis networks with large language models, converting medical image inputs into a clear and concise textual summary of the patient’s condition.

Abstract Image

利用大型语言模型对医学影像进行交互式计算机辅助诊断
计算机辅助诊断(CAD)推动了医学影像分析的发展,而大型语言模型(LLMs)也显示出了临床应用的潜力。然而,LLMs 在解释医学图像方面却举步维艰,而医学图像对决策至关重要。在这里,我们展示了一种将 LLM 与 CAD 网络相结合的策略。该框架利用 LLMs 的医学知识和推理能力,通过用自然语言总结信息来增强 CAD 网络的输出,如诊断、病变分割和报告生成。生成的报告质量更高,可以提高基于视觉的 CAD 模型的性能。在胸部 X 光检查中,与最先进的模型相比,使用 ChatGPT 的 LLM 诊断性能提高了 16.42 个百分点,而 GPT-3 的 F1 分数提高了 15.00 个百分点。与只有专业人士才能理解的传统 CAD 系统不同,我们的策略允许生成准确的报告,并创建了一个患者友好型交互系统。这种方法有望彻底改变临床决策和患者沟通。Wang 等人开发了一种机器学习策略,用于改进大型语言模型,以理解和分析可视化医疗信息。他们的框架将医学影像计算机辅助诊断网络与大型语言模型无缝集成,将医学影像输入转化为清晰简洁的病人病情文本摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信