Effective generic freeness and applications to local cohomology

IF 1 2区 数学 Q1 MATHEMATICS
Yairon Cid-Ruiz, Ilya Smirnov
{"title":"Effective generic freeness and applications to local cohomology","authors":"Yairon Cid-Ruiz,&nbsp;Ilya Smirnov","doi":"10.1112/jlms.12995","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> be a Noetherian domain and <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> be a finitely generated <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>-algebra. We study several features regarding the generic freeness over <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> of an <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-module. For an ideal <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>⊂</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$I \\subset R$</annotation>\n </semantics></math>, we show that the local cohomology modules <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>H</mi>\n <mi>I</mi>\n <mi>i</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\normalfont \\text{H}_I^i(R)$</annotation>\n </semantics></math> are generically free over <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> under certain settings where <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> is a smooth <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>-algebra. By utilizing the theory of Gröbner bases over arbitrary Noetherian rings, we provide an effective method to b make explicit the generic freeness over <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> of a finitely generated <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-module.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12995","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let A $A$ be a Noetherian domain and R $R$ be a finitely generated A $A$ -algebra. We study several features regarding the generic freeness over A $A$ of an R $R$ -module. For an ideal I R $I \subset R$ , we show that the local cohomology modules H I i ( R ) $\normalfont \text{H}_I^i(R)$ are generically free over A $A$ under certain settings where R $R$ is a smooth A $A$ -algebra. By utilizing the theory of Gröbner bases over arbitrary Noetherian rings, we provide an effective method to b make explicit the generic freeness over A $A$ of a finitely generated R $R$ -module.

有效通用自由性及其在局部同调中的应用
假设 A $A$ 是诺特域,R $R$ 是有限生成的 A $A$ -代数。我们将研究 R $R$ 模块在 A $A$ 上的泛自由性的几个特征。对于一个理想 I ⊂ R $I (子集 R$),我们证明了局部同调模块 H I i ( R ) $\normalfont \text{H}_I^i(R)$ 在 R $R$ 是光滑的 A $A$ -代数的特定情况下在 A $A$ 上是泛自由的。通过利用任意诺特环上的格氏基理论,我们提供了一种有效的方法来明确有限生成的 R $R$ 模块在 A $A$ 上的泛自由性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信