Amy D. Holt, Amy M. McKenna, Anne M. Kellerman, Tom I. Battin, Jason B. Fellman, Eran Hood, Hannes Peter, Martina Schön, Vincent De Staercke, Michail Styllas, Matteo Tolosano, Robert G. M. Spencer
{"title":"Gradients of Deposition and In Situ Production Drive Global Glacier Organic Matter Composition","authors":"Amy D. Holt, Amy M. McKenna, Anne M. Kellerman, Tom I. Battin, Jason B. Fellman, Eran Hood, Hannes Peter, Martina Schön, Vincent De Staercke, Michail Styllas, Matteo Tolosano, Robert G. M. Spencer","doi":"10.1029/2024GB008212","DOIUrl":null,"url":null,"abstract":"<p>Runoff from rapidly melting mountain glaciers is a dominant source of riverine organic carbon in many high-latitude and high-elevation regions. Glacier dissolved organic carbon is highly bioavailable, and its composition likely reflects internal (e.g., autotrophic production) and external (i.e., atmospheric deposition) sources. However, the balance of these sources across Earth's glaciers is poorly understood, despite implications for the mineralization and assimilation of glacier organic carbon within recipient ecosystems. We assessed the molecular-level composition of dissolved organic matter from 136 mountain glacier outflows from 11 regions covering six continents using ultrahigh resolution 21 T mass spectrometry. We found substantial diversity in organic matter composition with coherent and predictable (80% accuracy) regional patterns. Employing stable and radiocarbon isotopic analyses, we demonstrate that these patterns are inherently linked to atmospheric deposition and in situ production. In remote regions like Greenland and New Zealand, the glacier organic matter pool appears to be dominated by in situ production. However, downwind of industrial centers (e.g., Alaska and Nepal), fossil fuel combustion byproducts likely underpin organic matter composition, resulting in older and more aromatic material being exported downstream. These findings highlight that the glacier carbon cycle is spatially distinct, with ramifications for predicting the dynamics and fate of glacier organic carbon concurrent with continued retreat and anthropogenic perturbation.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 9","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008212","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Runoff from rapidly melting mountain glaciers is a dominant source of riverine organic carbon in many high-latitude and high-elevation regions. Glacier dissolved organic carbon is highly bioavailable, and its composition likely reflects internal (e.g., autotrophic production) and external (i.e., atmospheric deposition) sources. However, the balance of these sources across Earth's glaciers is poorly understood, despite implications for the mineralization and assimilation of glacier organic carbon within recipient ecosystems. We assessed the molecular-level composition of dissolved organic matter from 136 mountain glacier outflows from 11 regions covering six continents using ultrahigh resolution 21 T mass spectrometry. We found substantial diversity in organic matter composition with coherent and predictable (80% accuracy) regional patterns. Employing stable and radiocarbon isotopic analyses, we demonstrate that these patterns are inherently linked to atmospheric deposition and in situ production. In remote regions like Greenland and New Zealand, the glacier organic matter pool appears to be dominated by in situ production. However, downwind of industrial centers (e.g., Alaska and Nepal), fossil fuel combustion byproducts likely underpin organic matter composition, resulting in older and more aromatic material being exported downstream. These findings highlight that the glacier carbon cycle is spatially distinct, with ramifications for predicting the dynamics and fate of glacier organic carbon concurrent with continued retreat and anthropogenic perturbation.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.