{"title":"Repeatability of two methods for estimating scapular kinematics during dynamic functional tasks","authors":"Angelica E. Lang","doi":"10.1016/j.jbiomech.2024.112334","DOIUrl":null,"url":null,"abstract":"<div><p>Best practices for scapular motion tracking are still being determined. The repeatability of different scapular kinematic procedures needs to be evaluated. The purpose of this study was to assess the test-retest reliability of two scapular kinematic procedures: double calibration with AMC (D-AMC) and individualized linear modelling (LM). Ten healthy participants had their upper body movement tracked with optical motion capture in two identical sessions. Five scapular calibration poses were performed, and seven dynamic functional tasks were tested. Scapular angles were calculated from both procedures (D-AMC vs LM). The D-AMC approach uses two poses (neutral and maximum elevation) and tracks the scapula with a rigid cluster, while the LM approach predicts scapular positioning from humeral angles based on equations built from the calibration pose data. Angle waveforms and repeatability outcomes were compared. Internal and upward rotation angle waveforms were significantly different (p < 0.05) between kinematic procedures for some tasks, with maximum mean differences up to 17.3° and 23.2°, respectively. Overall, repeatability outcomes were similar between procedures, but the LM approach was slightly better for tilt and the D-AMC approach was notably improved for upward rotation in certain tasks. For example, minimal detectable changes during the Forward Transfer ranged from 6.9° to 11.9° for the D-AMC and 8.9° to 25.3° for the LM. Discrepancies between procedures may be a function of the calibration poses chosen. Additional calibration poses may improve the comparisons between procedures.</p></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"176 ","pages":"Article 112334"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021929024004123/pdfft?md5=db359fa6f3f2d4ac7ce570c39baf45ce&pid=1-s2.0-S0021929024004123-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024004123","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Best practices for scapular motion tracking are still being determined. The repeatability of different scapular kinematic procedures needs to be evaluated. The purpose of this study was to assess the test-retest reliability of two scapular kinematic procedures: double calibration with AMC (D-AMC) and individualized linear modelling (LM). Ten healthy participants had their upper body movement tracked with optical motion capture in two identical sessions. Five scapular calibration poses were performed, and seven dynamic functional tasks were tested. Scapular angles were calculated from both procedures (D-AMC vs LM). The D-AMC approach uses two poses (neutral and maximum elevation) and tracks the scapula with a rigid cluster, while the LM approach predicts scapular positioning from humeral angles based on equations built from the calibration pose data. Angle waveforms and repeatability outcomes were compared. Internal and upward rotation angle waveforms were significantly different (p < 0.05) between kinematic procedures for some tasks, with maximum mean differences up to 17.3° and 23.2°, respectively. Overall, repeatability outcomes were similar between procedures, but the LM approach was slightly better for tilt and the D-AMC approach was notably improved for upward rotation in certain tasks. For example, minimal detectable changes during the Forward Transfer ranged from 6.9° to 11.9° for the D-AMC and 8.9° to 25.3° for the LM. Discrepancies between procedures may be a function of the calibration poses chosen. Additional calibration poses may improve the comparisons between procedures.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.