Advancements of nanotechnological strategies as conventional approach for heavy metal removal from industrial wastewater: Start-of-the-art review

Q2 Materials Science
Sakshi Raturi , Swati Kumari , Kovács András , Rohit Khargotra , Viktor Sebestyén , Tej Singh
{"title":"Advancements of nanotechnological strategies as conventional approach for heavy metal removal from industrial wastewater: Start-of-the-art review","authors":"Sakshi Raturi ,&nbsp;Swati Kumari ,&nbsp;Kovács András ,&nbsp;Rohit Khargotra ,&nbsp;Viktor Sebestyén ,&nbsp;Tej Singh","doi":"10.1016/j.crgsc.2024.100428","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-faceted growth and progression of the healthy and economical society, depends upon access to clean and safe water. Rapidly over-growing population, increased in industrialization, urbanisation, and widespread practices in agricultural have all together been contributing to the production of more rapid wastewater discharge, which has not only polluted or contaminated the water but also have played a role in killing the aquatic life. One class of harmful water pollutants that is frequently found in the environment is heavy metals. Almost every transition metal has the ability to dissolve as ions in water. Heavy metals including Pb, Cd, Hg, As, Se and others can contaminate water supplies. Conventional methods for waste-water treatment have peculiar challenges including economic feasibility, energy consumption, environmental hazards, time spent, etc. To overcome these limitations, nanotechnology have been developed, which has its greater extent of application in water treatment area. Nanoparticles have a greater probability of removing heavy metals from wastewater treatment due to their effective surface characteristics and chemical activity. This review focuses on the numerous treatment procedures that have been developed recently and also been applied practically for eradication of heavy metals from waste-water of various industries.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100428"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266608652400033X/pdfft?md5=b32963078daa5883ead97bd50b39ea6a&pid=1-s2.0-S266608652400033X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266608652400033X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-faceted growth and progression of the healthy and economical society, depends upon access to clean and safe water. Rapidly over-growing population, increased in industrialization, urbanisation, and widespread practices in agricultural have all together been contributing to the production of more rapid wastewater discharge, which has not only polluted or contaminated the water but also have played a role in killing the aquatic life. One class of harmful water pollutants that is frequently found in the environment is heavy metals. Almost every transition metal has the ability to dissolve as ions in water. Heavy metals including Pb, Cd, Hg, As, Se and others can contaminate water supplies. Conventional methods for waste-water treatment have peculiar challenges including economic feasibility, energy consumption, environmental hazards, time spent, etc. To overcome these limitations, nanotechnology have been developed, which has its greater extent of application in water treatment area. Nanoparticles have a greater probability of removing heavy metals from wastewater treatment due to their effective surface characteristics and chemical activity. This review focuses on the numerous treatment procedures that have been developed recently and also been applied practically for eradication of heavy metals from waste-water of various industries.

作为去除工业废水中重金属的常规方法,纳米技术战略的发展:最新进展回顾
健康和经济社会的多方面发展和进步取决于能否获得清洁和安全的水。人口的快速过快增长、工业化和城市化进程的加快以及农业生产实践的广泛开展,共同导致了废水的快速排放,这不仅污染了水源,还对水生生物的生存造成了威胁。环境中经常出现的一类有害水污染物是重金属。几乎所有过渡金属都能以离子形式溶解于水。包括铅、镉、汞、砷、硒等在内的重金属会污染水源。传统的废水处理方法面临着特殊的挑战,包括经济可行性、能源消耗、环境危害、耗时等。为了克服这些局限性,纳米技术应运而生,并在水处理领域得到了更广泛的应用。纳米颗粒因其有效的表面特性和化学活性,在废水处理中去除重金属的可能性更大。本综述将重点介绍最近开发并实际应用于消除各行业废水中重金属的众多处理程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Green and Sustainable Chemistry
Current Research in Green and Sustainable Chemistry Materials Science-Materials Chemistry
CiteScore
11.20
自引率
0.00%
发文量
116
审稿时长
78 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信