Isabel S. Fernandes , Mariana G. Domingos , Marcelo F. Costa , Ricardo J. Santos , José Carlos B. Lopes
{"title":"Preparation and pipeline transport of CO2 as a hydrate slurry – Modelling and techno-economic analysis","authors":"Isabel S. Fernandes , Mariana G. Domingos , Marcelo F. Costa , Ricardo J. Santos , José Carlos B. Lopes","doi":"10.1016/j.cep.2024.109973","DOIUrl":null,"url":null,"abstract":"<div><p>CO<sub>2</sub> transportation as a hydrate slurry is modelled in Aspen Plus, including the slurry preparation and the pipeline transport. Due to the lack of built-in models for the hydrate formation, mass and energy balances were developed and implemented using a User-block function. NRTL-RK global property method was used, given the accuracy in predicting the CO<sub>2</sub> solubility in water under incipient hydrate formation conditions and the dissolution heat of CO<sub>2</sub> in water. The conventional process of transporting CO<sub>2</sub> in a supercritical state was also modelled to benchmark the hydrate-based technology. The hydrate-based process is safer than the conventional process as it requires lower operating pressures, but the estimated costs are higher due to the need for refrigeration and larger pipeline diameters for transportation. The addition of thermodynamic promoters, that moderate the hydrate formation conditions, the integration of cold streams with other processes, and valuing the water transported with CO<sub>2</sub>, will enhance the economic attractiveness of the hydrate-based process.</p></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"205 ","pages":"Article 109973"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0255270124003118/pdfft?md5=d7a77942271342a1b5a0d98b9f9a3922&pid=1-s2.0-S0255270124003118-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124003118","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
CO2 transportation as a hydrate slurry is modelled in Aspen Plus, including the slurry preparation and the pipeline transport. Due to the lack of built-in models for the hydrate formation, mass and energy balances were developed and implemented using a User-block function. NRTL-RK global property method was used, given the accuracy in predicting the CO2 solubility in water under incipient hydrate formation conditions and the dissolution heat of CO2 in water. The conventional process of transporting CO2 in a supercritical state was also modelled to benchmark the hydrate-based technology. The hydrate-based process is safer than the conventional process as it requires lower operating pressures, but the estimated costs are higher due to the need for refrigeration and larger pipeline diameters for transportation. The addition of thermodynamic promoters, that moderate the hydrate formation conditions, the integration of cold streams with other processes, and valuing the water transported with CO2, will enhance the economic attractiveness of the hydrate-based process.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.