{"title":"Relationship between punishment sensitivity and risk-taking propensity","authors":"Jie Zhao , Rong Zhang , Tingyong Feng","doi":"10.1016/j.bandc.2024.106222","DOIUrl":null,"url":null,"abstract":"<div><p>Previous research has shown that, in both laboratory and real-world contexts, punishment sensitivity is associated with lower risk-taking propensity. The neural underpinnings of the association between punishment sensitivity and risk-taking, however, remain largely unknown. To address this issue, we implemented resting-state functional connectivity (RSFC) and voxel-based morphometry (VBM) methodologies to investigate the neural basis of their relationship in the current study (N=594). The behavioral results confirmed a negative association between punishment sensitivity and risk-taking propensity, which supports the hypothesis. The VBM results demonstrated a positive correlation between punishment sensitivity and gray matter volume in the right orbitofrontal cortex (ROFC). Furthermore, the results of the RSFC analysis revealed that the functional connectivity between ROFC and the right medial temporal gyrus (RMTG) was positively associated with punishment sensitivity. Notably, mediation analysis demonstrated that punishment sensitivity acted as a complete mediator in the influence of ROFC-RMTG functional connectivity on risk-taking. These findings suggest that ROFC-RMTG functional connectivity may be the neural basis underlying the effect of punishment sensitivity on risk-taking propensity, which provides a new perspective for understanding the relationship between punishment sensitivity and risk-taking propensity.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"181 ","pages":"Article 106222"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Cognition","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027826262400099X","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Previous research has shown that, in both laboratory and real-world contexts, punishment sensitivity is associated with lower risk-taking propensity. The neural underpinnings of the association between punishment sensitivity and risk-taking, however, remain largely unknown. To address this issue, we implemented resting-state functional connectivity (RSFC) and voxel-based morphometry (VBM) methodologies to investigate the neural basis of their relationship in the current study (N=594). The behavioral results confirmed a negative association between punishment sensitivity and risk-taking propensity, which supports the hypothesis. The VBM results demonstrated a positive correlation between punishment sensitivity and gray matter volume in the right orbitofrontal cortex (ROFC). Furthermore, the results of the RSFC analysis revealed that the functional connectivity between ROFC and the right medial temporal gyrus (RMTG) was positively associated with punishment sensitivity. Notably, mediation analysis demonstrated that punishment sensitivity acted as a complete mediator in the influence of ROFC-RMTG functional connectivity on risk-taking. These findings suggest that ROFC-RMTG functional connectivity may be the neural basis underlying the effect of punishment sensitivity on risk-taking propensity, which provides a new perspective for understanding the relationship between punishment sensitivity and risk-taking propensity.
期刊介绍:
Brain and Cognition is a forum for the integration of the neurosciences and cognitive sciences. B&C publishes peer-reviewed research articles, theoretical papers, case histories that address important theoretical issues, and historical articles into the interaction between cognitive function and brain processes. The focus is on rigorous studies of an empirical or theoretical nature and which make an original contribution to our knowledge about the involvement of the nervous system in cognition. Coverage includes, but is not limited to memory, learning, emotion, perception, movement, music or praxis in relationship to brain structure or function. Published articles will typically address issues relating some aspect of cognitive function to its neurological substrates with clear theoretical import, formulating new hypotheses or refuting previously established hypotheses. Clinical papers are welcome if they raise issues of theoretical importance or concern and shed light on the interaction between brain function and cognitive function. We welcome review articles that clearly contribute a new perspective or integration, beyond summarizing the literature in the field; authors of review articles should make explicit where the contribution lies. We also welcome proposals for special issues on aspects of the relation between cognition and the structure and function of the nervous system. Such proposals can be made directly to the Editor-in-Chief from individuals interested in being guest editors for such collections.