Recognizing unit multiple interval graphs is hard

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Virginia Ardévol Martínez , Romeo Rizzi , Florian Sikora , Stéphane Vialette
{"title":"Recognizing unit multiple interval graphs is hard","authors":"Virginia Ardévol Martínez ,&nbsp;Romeo Rizzi ,&nbsp;Florian Sikora ,&nbsp;Stéphane Vialette","doi":"10.1016/j.dam.2024.09.011","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple interval graphs are a well-known generalization of interval graphs introduced in the 1970s to deal with situations arising naturally in scheduling and allocation. A <span><math><mi>d</mi></math></span>-interval is the union of <span><math><mi>d</mi></math></span> disjoint intervals on the real line, and a graph is a <span><math><mi>d</mi></math></span>-interval graph if it is the intersection graph of <span><math><mi>d</mi></math></span>-intervals. In particular, it is a unit <span><math><mi>d</mi></math></span>-interval graph if it admits a <span><math><mi>d</mi></math></span>-interval representation where every interval has unit length.</p><p>Whereas it has been known for a long time that recognizing 2-interval graphs and other related classes such as 2-track interval graphs is <span><math><mi>NP</mi></math></span>-complete, the complexity of recognizing unit 2-interval graphs remains open. Here, we settle this question by proving that the recognition of unit 2-interval graphs is also <span><math><mi>NP</mi></math></span>-complete. Our proof technique uses a completely different approach from the other hardness results of recognizing related classes. Furthermore, we extend the result for unit <span><math><mi>d</mi></math></span>-interval graphs for any <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, which does not follow directly in graph recognition problems — as an example, it took almost 20 years to close the gap between <span><math><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>d</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span> for the recognition of <span><math><mi>d</mi></math></span>-track interval graphs. Our result has several implications, including that for every <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, recognizing <span><math><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>x</mi><mo>)</mo></mrow></math></span>\n<span><math><mi>d</mi></math></span>-interval graphs and depth <span><math><mi>r</mi></math></span> unit <span><math><mi>d</mi></math></span>-interval graphs is <span><math><mi>NP</mi></math></span>-complete for every <span><math><mrow><mi>x</mi><mo>≥</mo><mn>11</mn></mrow></math></span> and every <span><math><mrow><mi>r</mi><mo>≥</mo><mn>4</mn></mrow></math></span>.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 258-274"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166218X24004013/pdfft?md5=435fad9c65782c974becdf669baa5302&pid=1-s2.0-S0166218X24004013-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004013","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple interval graphs are a well-known generalization of interval graphs introduced in the 1970s to deal with situations arising naturally in scheduling and allocation. A d-interval is the union of d disjoint intervals on the real line, and a graph is a d-interval graph if it is the intersection graph of d-intervals. In particular, it is a unit d-interval graph if it admits a d-interval representation where every interval has unit length.

Whereas it has been known for a long time that recognizing 2-interval graphs and other related classes such as 2-track interval graphs is NP-complete, the complexity of recognizing unit 2-interval graphs remains open. Here, we settle this question by proving that the recognition of unit 2-interval graphs is also NP-complete. Our proof technique uses a completely different approach from the other hardness results of recognizing related classes. Furthermore, we extend the result for unit d-interval graphs for any d2, which does not follow directly in graph recognition problems — as an example, it took almost 20 years to close the gap between d=2 and d>2 for the recognition of d-track interval graphs. Our result has several implications, including that for every d2, recognizing (x,,x) d-interval graphs and depth r unit d-interval graphs is NP-complete for every x11 and every r4.

认识单位多重区间图很难
多区间图是 20 世纪 70 年代引入的对区间图的著名概括,用于处理调度和分配中自然出现的情况。d 个区间是实线上 d 个互不相交的区间的联合,如果一个图是 d 个区间的交集图,那么它就是一个 d 个区间图。特别是,如果一个图可以用 d 个区间表示,其中每个区间的长度都是单位,那么它就是一个单位 d 个区间图。长期以来,人们都知道识别 2 个区间图和其他相关类别(如 2 轨区间图)是 NP-完全的,但识别单位 2 个区间图的复杂性仍然是个未知数。在这里,我们通过证明单位 2 间隔图的识别也是 NP-完全来解决这个问题。我们的证明技术采用了一种完全不同于其他识别相关类的硬度结果的方法。此外,我们还扩展了对任意 d≥2 的单位 d 间隔图的结果,这在图识别问题中并不直接适用--例如,在识别 d 轨道间隔图时,我们花了近 20 年时间才缩小了 d=2 和 d>2 之间的差距。我们的结果有几个意义,包括对于每一个 d≥2,对于每一个 x≥11 和每一个 r≥4,识别(x,...,x)d-区间图和深度 r 单位 d-区间图都是 NP-完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信