Asymptotic behavior for the fast diffusion equation with absorption and singularity

IF 2.4 2区 数学 Q1 MATHEMATICS
Changping Xie , Shaomei Fang , Ming Mei , Yuming Qin
{"title":"Asymptotic behavior for the fast diffusion equation with absorption and singularity","authors":"Changping Xie ,&nbsp;Shaomei Fang ,&nbsp;Ming Mei ,&nbsp;Yuming Qin","doi":"10.1016/j.jde.2024.09.026","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the weak solution for the fast diffusion equation with absorption and singularity in the form of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>△</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. We first prove the existence and decay estimate of weak solution when the fast diffusion index satisfies <span><math><mn>0</mn><mo>&lt;</mo><mi>m</mi><mo>&lt;</mo><mn>1</mn></math></span> and the absorption index is <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>. Then we show the asymptotic convergence of weak solution to the corresponding Barenblatt solution for <span><math><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>&lt;</mo><mi>m</mi><mo>&lt;</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>&gt;</mo><mi>m</mi><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span> via the entropy dissipation method combining the generalized Shannon's inequality and Csiszár-Kullback inequality. The singularity of spatial diffusion causes us the technical challenges for the asymptotic behavior of weak solution.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006107","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the weak solution for the fast diffusion equation with absorption and singularity in the form of ut=umup. We first prove the existence and decay estimate of weak solution when the fast diffusion index satisfies 0<m<1 and the absorption index is p>1. Then we show the asymptotic convergence of weak solution to the corresponding Barenblatt solution for n1n<m<1 and p>m+2n via the entropy dissipation method combining the generalized Shannon's inequality and Csiszár-Kullback inequality. The singularity of spatial diffusion causes us the technical challenges for the asymptotic behavior of weak solution.

具有吸收和奇异性的快速扩散方程的渐近行为
本文关注有吸收和奇异性的快速扩散方程的弱解,其形式为 ut=△um-up。我们首先证明了当快速扩散指数满足 0<m<1 和吸收指数为 p>1 时弱解的存在性和衰减估计,然后通过熵耗散方法结合广义香农不等式和 Csiszár-Kullback 不等式证明了弱解在 n-1n<m<1 和 p>m+2n 时对相应的 Barenblatt 解的渐近收敛性。空间扩散的奇异性给弱解的渐近行为带来了技术挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信