Yu Fan , Zhaokui Ni , Yue Dong , Shengrui Wang , Jian Zhang
{"title":"Watershed sustainable phosphorus management involving the resilience assessment: Framework and application","authors":"Yu Fan , Zhaokui Ni , Yue Dong , Shengrui Wang , Jian Zhang","doi":"10.1016/j.resconrec.2024.107907","DOIUrl":null,"url":null,"abstract":"<div><p>Phosphorus (P) is an important nutrient for human society development and a central factor to pollution issues, especially causing lake eutrophication in the watershed. However, a management method considering both the resource attributes and pollution issues is absent, resulting in disorder and uncertainty governance of P flows. We present a two-dimensions and multiple-nodes distributed management framework of P transport process in the watershed, which incorporates resilience assessment, material flow analysis and scenario analysis. The framework was validated and applied to the Erhai Lake of China. Results show that the imbalance governance exists in the whole-watershed P flows. And it was overly vulnerable to dramatic changes with the key links and nodes related to food production. This framework can be used to identify where and how to improve watershed sustainable P management for reduced pollution and increased food security. Besides, it offers an effective approach for governance of nutrient flows.</p></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"212 ","pages":"Article 107907"},"PeriodicalIF":11.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924005007","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus (P) is an important nutrient for human society development and a central factor to pollution issues, especially causing lake eutrophication in the watershed. However, a management method considering both the resource attributes and pollution issues is absent, resulting in disorder and uncertainty governance of P flows. We present a two-dimensions and multiple-nodes distributed management framework of P transport process in the watershed, which incorporates resilience assessment, material flow analysis and scenario analysis. The framework was validated and applied to the Erhai Lake of China. Results show that the imbalance governance exists in the whole-watershed P flows. And it was overly vulnerable to dramatic changes with the key links and nodes related to food production. This framework can be used to identify where and how to improve watershed sustainable P management for reduced pollution and increased food security. Besides, it offers an effective approach for governance of nutrient flows.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.