Yalong Song, Jianjiang Lu, Min Li, Yujun Yan, Nieli Zuo
{"title":"Enhancing photocatalytic degradation of La-BiVO4 through bidirectional regulation of oxygen vacancy and the Mott-Schottky effect","authors":"Yalong Song, Jianjiang Lu, Min Li, Yujun Yan, Nieli Zuo","doi":"10.1016/j.surfin.2024.105121","DOIUrl":null,"url":null,"abstract":"<div><p>Selective oxidation of photocatalysts is an important reaction, but catalytic capacity and reaction selectivity are usually contradictory. Herein, ultrafine La nanoparticles were introduced to regulate and control the coordination number and environment of Bi, and a catalyst was synthesized with oxygen defects (La-BiVO<sub>4</sub>) for Rhodamine degradation. Particularly, La-BiVO<sub>4</sub> achieved a better reaction rate and selectivity under visible-light irradiation. The results revealed that the degradation rate of Rhodamine by La-BiVO<sub>4</sub> reached 94.9 %. Additionally, the characterization and density functional theoretical calculation demonstrated that the Mott-Schottky effect in La-BiVO<sub>4</sub> not only changed the BiVO<sub>4</sub> electron density and boosted the visible-light-sensitivity, but also hastened the photogenerated charge migration and reduced the energy barrier. This study not only reveals the important role of optimizing single-atom coordination environment in generating free radicals in photocatalytic reactions, but also provides a reasonable degradation strategy for specific pollutants in the environment.</p></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"54 ","pages":"Article 105121"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246802302401277X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Selective oxidation of photocatalysts is an important reaction, but catalytic capacity and reaction selectivity are usually contradictory. Herein, ultrafine La nanoparticles were introduced to regulate and control the coordination number and environment of Bi, and a catalyst was synthesized with oxygen defects (La-BiVO4) for Rhodamine degradation. Particularly, La-BiVO4 achieved a better reaction rate and selectivity under visible-light irradiation. The results revealed that the degradation rate of Rhodamine by La-BiVO4 reached 94.9 %. Additionally, the characterization and density functional theoretical calculation demonstrated that the Mott-Schottky effect in La-BiVO4 not only changed the BiVO4 electron density and boosted the visible-light-sensitivity, but also hastened the photogenerated charge migration and reduced the energy barrier. This study not only reveals the important role of optimizing single-atom coordination environment in generating free radicals in photocatalytic reactions, but also provides a reasonable degradation strategy for specific pollutants in the environment.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)